def C_analysis_pdf(datafile, iprotocol=0, Nmax=1000000, roi=0): data = MultimodalData(datafile) if not os.path.isdir(summary_pdf_folder(datafile)): os.mkdir(summary_pdf_folder(datafile)) pdf_filename = os.path.join( summary_pdf_folder(datafile), '%s-gratings-analysis.pdf' % data.protocols[iprotocol]) if roi == 0: ROIs = np.arange(data.iscell.sum())[:Nmax] else: ROIs = [roi] CELL_RESPS = [] with PdfPages(pdf_filename) as pdf: for roi in ROIs: fig, cell_resp = C_ROI_analysis(data, roiIndex=roi, iprotocol=iprotocol) CELL_RESPS.append(cell_resp) pdf.savefig(fig) # saves the current figure into a pdf page plt.close(fig) fig = summary_fig(CELL_RESPS) pdf.savefig(fig) plt.close(fig) print('[ok] moving dot analysis saved as: "%s" ' % pdf_filename)
def DS_analysis_pdf(datafile, iprotocol=0, Nmax=1000000): data = MultimodalData(datafile) pdf_filename = os.path.join( summary_pdf_folder(datafile), '%s-direction_selectivity.pdf' % data.protocols[iprotocol]) Nresp, SIs = 0, [] with PdfPages(pdf_filename) as pdf: for roi in np.arange(data.iscell.sum())[:Nmax]: print(' - direction-selectivity analysis for ROI #%i / %i' % (roi + 1, data.iscell.sum())) fig, SI, responsive = DS_ROI_analysis(data, roiIndex=roi, iprotocol=iprotocol) pdf.savefig() # saves the current figure into a pdf page plt.close() if responsive: Nresp += 1 SIs.append(SI) summary_fig2(Nresp, data.iscell.sum(), SIs, label='Direct. Select. Index') pdf.savefig() # saves the current figure into a pdf page plt.close() print('[ok] direction selectivity analysis saved as: "%s" ' % pdf_filename)
def population_analysis(FILES, min_time_minutes=2, exclude_subjects=[], ax=None, running_speed_threshold=0.1): times, fracs_running, subjects = [], [], [] if ax is None: fig, ax = ge.figure(figsize=(5, 1), top=5) else: fig = None for f in FILES: data = MultimodalData(f) if (data.nwbfile is not None) and ('Running-Speed' in data.nwbfile.acquisition): speed = data.nwbfile.acquisition['Running-Speed'].data[:] max_time = len( speed) / data.nwbfile.acquisition['Running-Speed'].rate if (max_time > 60 * min_time_minutes) and ( data.metadata['subject_ID'] not in exclude_subjects): times.append(max_time) fracs_running.append( 100 * np.sum(speed > running_speed_threshold) / len(speed)) subjects.append(data.metadata['subject_ID']) i = -1 for c, s in enumerate(np.unique(subjects)): s_cond = np.array(subjects) == s ax.bar(np.arange(1 + i, i + 1 + np.sum(s_cond)), np.array(fracs_running)[s_cond] + 1, width=.75, color=plt.cm.tab10(c % 10)) i += np.sum(s_cond) + 1 ax.bar([i + 2], [np.mean(fracs_running)], yerr=[np.std(fracs_running)], width=1.5, color='grey') ge.annotate(ax, 'frac. running:\n%.1f+/-%.1f %%' % (np.mean(fracs_running), np.std(fracs_running)), (i + 3, np.mean(fracs_running)), xycoords='data') ge.set_plot(ax, xticks=[], xlabel='\nrecording', ylabel=' frac. running (%)') ymax, i = ax.get_ylim()[1], -1 for c, s in enumerate(np.unique(subjects)): s_cond = np.array(subjects) == s ge.annotate(ax, s, (1 + i, ymax), rotation=90, color=plt.cm.tab10(c % 10), xycoords='data', size='x-small') i += np.sum(s_cond) + 1 return fig, ax
def analysis_pdf(datafile, iprotocol=0, Nmax=1000000): data = MultimodalData(datafile) pdf_filename = os.path.join(summary_pdf_folder(datafile), '%s-secondary_RF.pdf' % data.protocols[iprotocol]) # find center and surround icenter = np.argwhere([('center' in p) for p in data.protocols])[0][0] isurround = np.argwhere([('surround' in p) for p in data.protocols])[0][0] curves, results = [], {'Ntot':data.iscell.sum()} with PdfPages(pdf_filename) as pdf: for roi in np.arange(data.iscell.sum())[:Nmax]: print(' - secondary-RF analysis for ROI #%i / %i' % (roi+1, data.iscell.sum())) # fig, fig2, radii, max_response_curve, imax_response_curve, full_resp = ROI_analysis(data, roiIndex=roi, # iprotocol_center=icenter, # iprotocol_surround=isurround) FIGS = ROI_analysis(data, roiIndex=roi, iprotocol_center=icenter, iprotocol_surround=isurround) for fig in FIGS: pdf.savefig(fig) plt.close(fig) # pdf.savefig(fig2) # plt.close(fig2) # if max_response_curve is not None: # curves.append(max_response_curve) # # initialize if not done # for key in full_resp: # if ('-bins' in key) and (key not in results): # results[key] = full_resp[key] # elif (key not in results): # results[key] = [] # significant_cond = (full_resp['significant']==True) # if np.sum(significant_cond)>0: # imax = np.argmax(full_resp['value'][significant_cond]) # for key in full_resp: # if ('-bins' not in key): # results[key].append(full_resp[key][significant_cond][imax]) # if len(results['value'])>0: # fig = SS_summary_fig(results) # pdf.savefig(fig) # plt.close(fig) # fig = summary_fig(radii, curves, data.iscell.sum()) # pdf.savefig(fig) # plt.close(fig) print('[ok] secondary RF analysis saved as: "%s" ' % pdf_filename)
def analysis_pdf(datafile, iprotocol=0, Nmax=1000000): data = MultimodalData(datafile) pdf_filename = os.path.join( summary_pdf_folder(datafile), '%s-surround_suppression.pdf' % data.protocols[iprotocol]) curves, results = [], {'Ntot': data.iscell.sum()} with PdfPages(pdf_filename) as pdf: for roi in np.arange(data.iscell.sum())[:Nmax]: print(' - surround-suppression analysis for ROI #%i / %i' % (roi + 1, data.iscell.sum())) fig, fig2, radii, max_response_curve, imax_response_curve, full_resp = ROI_analysis( data, roiIndex=roi, iprotocol=iprotocol) pdf.savefig(fig) pdf.savefig(fig2) plt.close(fig) plt.close(fig2) if max_response_curve is not None: curves.append(max_response_curve) # initialize if not done for key in full_resp: if ('-bins' in key) and (key not in results): results[key] = full_resp[key] elif (key not in results): results[key] = [] significant_cond = (full_resp['significant'] == True) if np.sum(significant_cond) > 0: imax = np.argmax(full_resp['value'][significant_cond]) for key in full_resp: if ('-bins' not in key): results[key].append( full_resp[key][significant_cond][imax]) if len(results['value']) > 0: fig = SS_summary_fig(results) pdf.savefig(fig) plt.close(fig) fig = summary_fig(radii, curves, data.iscell.sum()) pdf.savefig(fig) plt.close(fig) print('[ok] direction selectivity analysis saved as: "%s" ' % pdf_filename)
def analysis_pdf(datafile, Tzoom=120, NzoomPlot=3): pdf_filename = os.path.join(summary_pdf_folder(datafile), 'behavior.pdf') data = MultimodalData(datafile) with PdfPages(pdf_filename) as pdf: print('* plotting behavioral data as "behavior.pdf" [...]') print(' - raw behavior plot ') fig, ax = plt.subplots(1, figsize=(11.4, 3.5)) fig.subplots_adjust(top=0.8, bottom=0.05) subsampling = max( [int((data.tlim[1] - data.tlim[0]) / data.CaImaging_dt / 1000), 1]) data.plot_raw_data( data.tlim, settings=raw_data_plot_settings( data, subsampling_factor=int((data.tlim[1] - data.tlim[0]) / 60. + 1)), ax=ax) axT = add_inset_with_time_sample(data.tlim, data.tlim, plt) pdf.savefig() # saves the current figure into a pdf page plt.close() # plot raw data sample for t0 in np.linspace(Tzoom, data.tlim[1], NzoomPlot): TLIM = [np.max([10, t0 - Tzoom]), t0] print(' - plotting raw data sample at times ', TLIM) fig, ax = plt.subplots(1, figsize=(11.4, 5)) fig.subplots_adjust(top=0.8, bottom=0.05) data.plot_raw_data(TLIM, settings=raw_data_plot_settings( data, subsampling_factor=1), ax=ax) axT = add_inset_with_time_sample(TLIM, data.tlim, plt) pdf.savefig() # saves the current figure into a pdf page plt.close() print(' - behavior analysis ') fig = analysis_fig(data) pdf.savefig() # saves the current figure into a pdf page plt.close() print('[ok] behavioral data saved as: "%s" ' % pdf_filename)
def analysis_pdf(datafile, NzoomPlot=5, Nroi=10): pdf_filename = os.path.join(summary_pdf_folder(datafile), 'raw.pdf') data = MultimodalData(datafile) if data.metadata['CaImaging']: Tzoom=60 else: Tzoom=20 with PdfPages(pdf_filename) as pdf: print('* plotting raw data as "raw.pdf" [...]') fig, ax = plt.subplots(1, figsize=(11.4, 5)) fig.subplots_adjust(top=0.8, bottom=0.05) print(' - plotting full data view') if data.metadata['CaImaging']: subsampling = max([int((data.tlim[1]-data.tlim[0])/data.CaImaging_dt/1000), 1]) else: subsampling = 1 data.plot_raw_data(data.tlim, settings=raw_data_plot_settings(data, Nroi=Nroi, subsampling_factor=int((data.tlim[1]-data.tlim[0])/60.+1)), ax=ax) axT = add_inset_with_time_sample(data.tlim, data.tlim, plt) pdf.savefig() # saves the current figure into a pdf page plt.close() # plot raw data sample for t0 in np.linspace(Tzoom, data.tlim[1], NzoomPlot): TLIM = [np.max([10,t0-Tzoom]),t0] print(' - plotting raw data sample at times ', TLIM) fig, ax = plt.subplots(1, figsize=(11.4, 5)) fig.subplots_adjust(top=0.8, bottom=0.05) data.plot_raw_data(TLIM, settings=raw_data_plot_settings(data, Nroi=Nroi), ax=ax) axT = add_inset_with_time_sample(TLIM, data.tlim, plt) pdf.savefig() # saves the current figure into a pdf page plt.close() print('[ok] raw data plot saved as: "%s" ' % pdf_filename)
def analysis_pdf(datafile, Nmax=1000000): pdf_filename = os.path.join(summary_pdf_folder(datafile), 'rois.pdf') data = MultimodalData(datafile) data.correctedFluo, data.F0 = data.build_dFoF( return_corrected_F_and_F0=True) with PdfPages(pdf_filename) as pdf: print('* plotting ROI analysis as "rois.pdf" [...]') print(' - plotting imaging FOV') fig, AX = plt.subplots(1, 5, figsize=(11.4, 2.5)) plt.subplots_adjust(left=0.03, right=0.97) data.show_CaImaging_FOV(key='meanImg', NL=1, cmap='viridis', ax=AX[0]) data.show_CaImaging_FOV(key='meanImg', NL=2, cmap='viridis', ax=AX[1]) data.show_CaImaging_FOV(key='meanImgE', NL=2, cmap='viridis', ax=AX[2]) data.show_CaImaging_FOV(key='max_proj', NL=2, cmap='viridis', ax=AX[3]) try: data.show_CaImaging_FOV(key='meanImg_chan2', NL=2, cmap='viridis', ax=AX[4]) except KeyError: AX[4].annotate('no red channel', (0.5, 0.5), xycoords='axes fraction', fontsize=9, va='center', ha='center') AX[4].axis('off') pdf.savefig() # saves the current figure into a pdf page plt.close() for i in np.arange(data.nROIs)[:Nmax]: print(' - plotting analysis of ROI #%i' % (i + 1)) try: fig = raw_fluo_fig(data, roiIndex=i) pdf.savefig(fig) # saves the current figure into a pdf page plt.close(fig) fig = analysis_fig(data, roiIndex=i) pdf.savefig(fig) # saves the current figure into a pdf page plt.close(fig) except BaseException as be: print(be) print(' /!\ Pb with ROI #%i /!\ ' % (i + 1)) print('[ok] roi analysis saved as: "%s" ' % pdf_filename)
def analysis_pdf(datafile, iprotocol=0, response_significance_threshold=0.01, roi=0, Nmax=1000000): data = MultimodalData(datafile) pdf_filename = os.path.join( summary_pdf_folder(datafile), '%s-moving-dots_selectivity.pdf' % data.protocols[iprotocol]) if roi == 0: ROIs = np.arange(data.iscell.sum())[:Nmax] else: ROIs = [roi] CELL_RESPS = [] with PdfPages(pdf_filename) as pdf: for roi in ROIs: fig, cell_resp = ROI_analysis( data, roiIndex=roi, iprotocol=iprotocol, response_significance_threshold=response_significance_threshold ) CELL_RESPS.append(cell_resp) pdf.savefig(fig) # saves the current figure into a pdf page plt.close(fig) fig = summary_fig(CELL_RESPS) pdf.savefig(fig) plt.close(fig) np.save( os.path.join(summary_pdf_folder(datafile), 'summary-moving-dot.npy'), CELL_RESPS) print('[ok] moving dot analysis saved as: "%s" ' % pdf_filename)
def analysis_pdf(datafile, iprotocol=0, Nmax=1000000): data = MultimodalData(datafile, with_visual_stim=True) pdf_filename = os.path.join( summary_pdf_folder(datafile), '%s-RF_mapping.pdf' % data.protocols[iprotocol]) curves, results = [], {'Ntot': data.iscell.sum()} with PdfPages(pdf_filename) as pdf: for roi in np.arange(data.iscell.sum())[:Nmax]: print(' - RF mapping analysis for ROI #%i / %i' % (roi + 1, data.iscell.sum())) fig = ROI_analysis(data, roiIndex=roi, iprotocol=iprotocol) pdf.savefig(fig) plt.close(fig) print('[ok] RF mapping analysis saved as: "%s" ' % pdf_filename)
def analysis_pdf(datafile, iprotocol=0, Nmax=1000000): data = MultimodalData(datafile) pdf_filename = os.path.join( summary_pdf_folder(datafile), '%s-contrast_curves.pdf' % data.protocols[iprotocol]) if data.metadata['CaImaging']: results = {'Ntot': data.iscell.sum()} with PdfPages(pdf_filename) as pdf: CURVES = [] for roi in np.arange(data.iscell.sum())[:Nmax]: print(' - contrast-curves analysis for ROI #%i / %i' % (roi + 1, data.iscell.sum())) fig, contrasts, max_response_curve = ROI_analysis( data, roiIndex=roi, iprotocol=iprotocol) pdf.savefig(fig) plt.close(fig) if np.max(max_response_curve) > 0: CURVES.append(max_response_curve) # fig = summary_fig(contrasts, CURVES, data.iscell.sum()) pdf.savefig(fig) plt.close(fig) elif data.metadata['Electrophy']: with PdfPages(pdf_filename) as pdf: fig, fig2 = Ephys_analysis(data, iprotocol=iprotocol) pdf.savefig(fig) plt.close(fig) pdf.savefig(fig2) plt.close(fig2) print('[ok] contrast-curves analysis saved as: "%s" ' % pdf_filename)
def analysis_pdf(datafile, iprotocol=-1, Nmax=2, verbose=False): data = MultimodalData(datafile) if iprotocol<0: iprotocol = np.argwhere([('gaussian-blobs' in p) for p in data.protocols])[0][0] print('gaussian-blob analysis for protocol #', iprotocol) pdf_filename = os.path.join(summary_pdf_folder(datafile), '%s-flashes.pdf' % data.protocols[iprotocol]) if data.metadata['CaImaging']: # results = {'Ntot':data.iscell.sum()} with PdfPages(pdf_filename) as pdf: fig = Ophys_analysis(data, Nmax=Nmax, verbose=verbose) pdf.savefig(fig) plt.close(fig) elif data.metadata['Electrophy']: with PdfPages(pdf_filename) as pdf: fig, fig2 = Ephys_analysis(data, iprotocol=iprotocol) pdf.savefig(fig) plt.close(fig) pdf.savefig(fig2) plt.close(fig2) print('[ok] gaussian-blobs analysis saved as: "%s" ' % pdf_filename)
def make_sumary_pdf(filename, Nmax=1000000, include=['exp', 'rois', 'raw', 'protocols'], T_raw_data=60, N_raw_data=5, ROI_raw_data=20, Tbar_raw_data=5): data = MultimodalData(filename) data.roiIndices = np.sort( np.random.choice(np.arange(data.iscell.sum()), size=min([data.iscell.sum(), ROI_raw_data]), replace=False)) folder = filename.replace('.nwb', '') if not os.path.isdir(folder): os.mkdir(folder) if 'exp' in include: with PdfPages(os.path.join(folder, 'exp.pdf')) as pdf: print('writing experimental metadata ') fig = metadata_fig(data) pdf.savefig() # saves the current figure into a pdf page plt.close() print('plotting behavior analysis ') fig = behavior_analysis_fig(data) pdf.savefig() # saves the current figure into a pdf page plt.close() if 'exp' in include: with PdfPages(os.path.join(folder, 'rois.pdf')) as pdf: print('plotting imaging FOV ') fig, AX = plt.subplots(1, 4, figsize=(11.4, 2)) data.show_CaImaging_FOV(key='meanImg', NL=1, cmap='viridis', ax=AX[0]) data.show_CaImaging_FOV(key='meanImg', NL=2, cmap='viridis', ax=AX[1]) data.show_CaImaging_FOV(key='meanImgE', NL=2, cmap='viridis', ax=AX[2]) data.show_CaImaging_FOV(key='max_proj', NL=2, cmap='viridis', ax=AX[3]) pdf.savefig() # saves the current figure into a pdf page plt.close() if 'raw' in include: with PdfPages(os.path.join(folder, 'raw.pdf')) as pdf: print('plotting full data view [...]') fig, ax = plt.subplots(1, figsize=(11.4, 5)) fig.subplots_adjust(top=0.8, bottom=0.05) data.plot(data.tlim, settings=raw_data_plot_settings(data, subsampling_factor=1000), ax=ax, Tbar=Tbar_raw_data) pdf.savefig() # saves the current figure into a pdf page plt.close() # # plot raw data sample # for t0 in np.linspace(T_raw_data, data.tlim[1], N_raw_data): # TLIM = [np.max([10,t0-T_raw_data]),t0] # print('plotting raw data sample at times ', TLIM) # fig, ax = plt.subplots(1, figsize=(11.4, 5)) # fig.subplots_adjust(top=0.8, bottom=0.05) # data.plot(TLIM, settings=raw_data_plot_settings(data), # ax=ax, Tbar=Tbar_raw_data) # # inset with time sample # axT = plt.axes([0.6, 0.9, 0.3, 0.05]) # axT.axis('off') # axT.plot(data.tlim, [0,0], 'k-', lw=2) # axT.plot(TLIM, [0,0], '-', color=plt.cm.tab10(3), lw=5) # axT.annotate('0 ', (0,0), xycoords='data', ha='right', fontsize=9) # axT.annotate(' %.1fmin' % (data.tlim[1]/60.), (data.tlim[1],0), xycoords='data', fontsize=9) # pdf.savefig() # saves the current figure into a pdf page # plt.close() print('looping over protocols for analysis [...]') if 'protocols' in include: # looping over protocols for p, protocol in enumerate(data.protocols): print('plotting protocol "%s" [...]' % protocol) with PdfPages(os.path.join(folder, '%s.pdf' % protocol)) as pdf: # finding protocol type protocol_type = (data.metadata['Protocol-%i-Stimulus' % (p + 1)] if (len(data.protocols) > 1) else data.metadata['Stimulus']) print(protocol_type) # then protocol-dependent analysis if protocol_type == 'full-field-grating': from analysis.orientation_direction_selectivity import orientation_selectivity_analysis Nresp, SIs = 0, [] for i in range(data.iscell.sum())[:Nmax]: fig, SI, responsive = orientation_selectivity_analysis( data, roiIndex=i, verbose=False) pdf.savefig( ) # saves the current figure into a pdf page plt.close() if responsive: Nresp += 1 SIs.append(SI) # summary figure for this protocol fig, AX = summary_fig(Nresp, data.iscell.sum(), np.array(SIs)) pdf.savefig() # saves the current figure into a pdf page plt.close() elif protocol_type == 'drifting-full-field-grating': from analysis.orientation_direction_selectivity import direction_selectivity_analysis Nresp, SIs = 0, [] for i in range(data.iscell.sum())[:Nmax]: fig, SI, responsive = direction_selectivity_analysis( data, roiIndex=i, verbose=False) pdf.savefig( ) # saves the current figure into a pdf page plt.close() if responsive: Nresp += 1 SIs.append(SI) fig, AX = summary_fig(Nresp, data.iscell.sum(), np.array(SIs), label='Direction Select. Index') pdf.savefig() # saves the current figure into a pdf page plt.close() elif protocol_type in [ 'center-grating', 'drifting-center-grating' ]: from surround_suppression import orientation_size_selectivity_analysis Nresp, SIs = 0, [] for i in range(data.iscell.sum())[:Nmax]: fig, responsive = orientation_size_selectivity_analysis( data, roiIndex=i, verbose=False) pdf.savefig( ) # saves the current figure into a pdf page plt.close() if responsive: Nresp += 1 SIs.append(0) # TO BE FILLED fig, AX = summary_fig(Nresp, data.iscell.sum(), np.array(SIs), label='none') pdf.savefig() # saves the current figure into a pdf page plt.close() elif 'noise' in protocol_type: from receptive_field_mapping import RF_analysis Nresp, SIs = 0, [] for i in range(data.iscell.sum())[:Nmax]: fig, SI, responsive = RF_analysis(data, roiIndex=i, verbose=False) pdf.savefig( ) # saves the current figure into a pdf page plt.close() if responsive: Nresp += 1 SIs.append(0) # TO BE FILLED fig, AX = summary_fig(Nresp, data.iscell.sum(), np.array(SIs), label='none') pdf.savefig() # saves the current figure into a pdf page plt.close() elif 'spatial-location' in protocol_type: from surround_suppression import orientation_size_selectivity_analysis Nresp, SIs = 0, [] for i in range(data.iscell.sum())[:Nmax]: fig, responsive = orientation_size_selectivity_analysis( data, roiIndex=i, verbose=False) pdf.savefig( ) # saves the current figure into a pdf page plt.close() if responsive: Nresp += 1 SIs.append(0) # TO BE FILLED fig, AX = summary_fig(Nresp, data.iscell.sum(), np.array(SIs), label='none') pdf.savefig() # saves the current figure into a pdf page plt.close() print('[ok] pdfs succesfully saved in "%s" !' % folder)
labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) AX[1].axis( 'equal') # Equal aspect ratio ensures that pie is drawn as a circle. AX[3].hist(quantity) AX[3].set_xlabel(label, fontsize=9) AX[3].set_ylabel('count', fontsize=9) for ax in [AX[0], AX[2]]: ax.axis('off') return fig, AX if __name__ == '__main__': # filename = '/home/yann/DATA/Wild_Type/2021_03_11-17-13-03.nwb' filename = sys.argv[-1] # pdf_dir = os.path.join(os.path.dirname(filename), 'summary', os.path.basename(filename)) data = MultimodalData(filename) # fig1 = metadata_fig(data) # fig2 = behavior_analysis_fig(data) # fig3 = roi_analysis_fig(data, roiIndex=0) # plt.show() # make_sumary_pdf(filename, include=['raw', 'protocols']) make_sumary_pdf(filename, include=['protocols'])
def make_summary_pdf(filename, Nmax=1000000, include=['exp', 'raw', 'behavior', 'rois', 'protocols'], verbose=True): data = MultimodalData(filename) folder = summary_pdf_folder(filename) if 'exp' in include: with PdfPages(os.path.join(folder, 'exp.pdf')) as pdf: print('* writing experimental metadata as "exp.pdf" [...] ') print(' - notes') fig = metadata_fig(data) pdf.savefig() # saves the current figure into a pdf page plt.close() print('[ok] notes saved as: "%s" ' % os.path.join(folder, 'exp.pdf')) if 'behavior' in include: process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'behavior.py') p = subprocess.Popen('%s %s %s' % (python_path, process_script, filename), shell=True) if 'raw' in include: process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'raw_data.py') p = subprocess.Popen('%s %s %s' % (python_path, process_script, filename), shell=True) if 'rois' in include: process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'rois.py') p = subprocess.Popen('%s %s %s --Nmax %i' % (python_path, process_script, filename, Nmax), shell=True) if 'protocols' in include: print(data.metadata['protocol']) print('* looping over protocols for analysis [...]') # --- analysis of multi-protocols --- if data.metadata['protocol'] == 'NDNF-protocol': process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'ndnf_protocol.py') p = subprocess.Popen('%s %s %s --Nmax %i' % (python_path, process_script, filename, Nmax), shell=True) elif data.metadata['protocol'] == 'mismatch-negativity': process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'mismatch_negativity.py') p = subprocess.Popen('%s %s %s --Nmax %i' % (python_path, process_script, filename, Nmax), shell=True) elif ('surround-suppression' in data.metadata['protocol']) or ('size-tuning' in data.metadata['protocol']): process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'surround_suppression.py') p = subprocess.Popen('%s %s %s --Nmax %i' % (python_path, process_script, filename, Nmax), shell=True) elif ('spatial-location' in data.metadata['protocol']) or ('spatial-mapping' in data.metadata['protocol']): process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'spatial_selectivity.py') p = subprocess.Popen('%s %s %s --Nmax %i' % (python_path, process_script, filename, Nmax), shell=True) elif 'contrast-curve' in data.metadata['protocol']: process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'contrast_curves.py') p = subprocess.Popen('%s %s %s --Nmax %i' % (python_path, process_script, filename, Nmax), shell=True) elif ('secondary' in data.metadata['protocol']): process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'secondary_RF.py') p = subprocess.Popen('%s %s %s --Nmax %i' % (python_path, process_script, filename, Nmax), shell=True) elif ('motion-contour-interaction' in data.metadata['protocol']): process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'motion_contour_interaction.py') p = subprocess.Popen('%s %s %s' % (python_path, process_script, filename), shell=True) else: # --- looping over protocols individually --- for ip, protocol in enumerate(data.protocols): print('* * analyzing protocol #%i: "%s" [...]' % (ip + 1, protocol)) protocol_type = (data.metadata['Protocol-%i-Stimulus' % (ip + 1)] if (len(data.protocols) > 1) else data.metadata['Stimulus']) # orientation selectivity analyis if protocol in ['Pakan-et-al-static']: process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'orientation_direction_selectivity.py') p = subprocess.Popen( '%s %s %s orientation --iprotocol %i --Nmax %i' % (python_path, process_script, filename, ip, Nmax), shell=True) if protocol in ['Pakan-et-al-drifting']: process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'orientation_direction_selectivity.py') p = subprocess.Popen( '%s %s %s direction --iprotocol %i --Nmax %i' % (python_path, process_script, filename, ip, Nmax), shell=True) if 'dg-' in protocol: process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'orientation_direction_selectivity.py') p = subprocess.Popen( '%s %s %s gratings --iprotocol %i --Nmax %i' % (python_path, process_script, filename, ip, Nmax), shell=True) if 'looming-' in protocol: process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'looming_stim.py') p = subprocess.Popen( '%s %s %s --iprotocol %i --Nmax %i' % (python_path, process_script, filename, ip, Nmax), shell=True) if 'gaussian-blobs' in protocol: process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'gaussian_blobs.py') p = subprocess.Popen( '%s %s %s --iprotocol %i' % (python_path, process_script, filename, ip), shell=True) if 'noise' in protocol: process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'receptive_field_mapping.py') p = subprocess.Popen( '%s %s %s --iprotocol %i' % (python_path, process_script, filename, ip), shell=True) if ('dot-stim' in protocol) or ('moving-dot' in protocol): process_script = os.path.join( str(pathlib.Path(__file__).resolve().parents[0]), 'protocol_scripts', 'moving_dot_selectivity.py') p = subprocess.Popen( '%s %s %s --iprotocol %i' % (python_path, process_script, filename, ip), shell=True) print('subprocesses to analyze "%s" were launched !' % filename)
def __init__( self, parent=None, dt_sampling=10, # ms fig_name=os.path.join(os.path.expanduser('~'), 'Desktop', 'fig.svg'), title='Figures'): super(FiguresWindow, self).__init__(parent=parent.app, title=title, i=-10, size=(800, 800)) self.modalities = [] for key1, key2 in zip([ 'Photodiode-Signal', 'Electrophysiological-Signal', 'Running-Speed', 'Pupil', 'CaImaging-TimeSeries', 'CaImaging-TimeSeries', 'Photodiode-Signal' ], [ 'Photodiode', 'Electrophy', 'Locomotion', 'Pupil', 'CaImagingSum', 'CaImaging', 'VisualStim' ]): if key1 in parent.nwbfile.acquisition: self.modalities.append(key2) self.parent = parent self.get_varied_parameters() self.fig_name = fig_name self.data = MultimodalData(self.parent.datafile) self.EPISODES = None self.xlim, self.ylim = [-10, 10], [-10, 10] mainLayout, Layouts = QtWidgets.QVBoxLayout(self.cwidget), [] # -- protocol Layouts.append(QtWidgets.QHBoxLayout()) # Layouts[-1].addWidget(QtWidgets.QLabel('-- Protocol: ', self)) self.pbox = QtWidgets.QComboBox(self) self.pbox.setFixedWidth(400) self.pbox.addItem(' [PROTOCOL] ') self.pbox.addItems(self.parent.protocols) Layouts[-1].addWidget(self.pbox) # -- quantity and subquantity Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget(QtWidgets.QLabel('-- Quantity: ', self)) self.qbox = QtWidgets.QComboBox(self) self.qbox.addItem('') if 'ophys' in self.parent.nwbfile.processing: self.qbox.addItem('CaImaging') for key in parent.nwbfile.acquisition: if len(parent.nwbfile.acquisition[key].data.shape) == 1: self.qbox.addItem(key) # only for scalar variables self.qbox.setFixedWidth(400) Layouts[-1].addWidget(self.qbox) Layouts[-1].addWidget( QtWidgets.QLabel(' -- Sub-quantity: ', self)) self.sqbox = QtWidgets.QLineEdit(self) self.sqbox.setText(35 * ' ' + 'e.g. "dF/F", "Neuropil", "pLFP", ...') self.sqbox.setMinimumWidth(400) Layouts[-1].addWidget(self.sqbox) # -- roi if 'ophys' in self.parent.nwbfile.processing: Layouts[-1].addWidget(QtWidgets.QLabel(' -- ROI: ', self)) self.roiPick = QtGui.QLineEdit() self.roiPick.setText( ' [select ROI] e.g.: "1", "10-20", "3, 45, 7", ... ') self.roiPick.setMinimumWidth(400) self.roiPick.returnPressed.connect(self.select_ROI) Layouts[-1].addWidget(self.roiPick) ### PLOT RAW DATA Layouts.append(QtWidgets.QHBoxLayout()) self.rawPlotBtn = QtWidgets.QPushButton(' plot raw data ', self) self.rawPlotBtn.setFixedWidth(200) self.rawPlotBtn.clicked.connect(self.plot_raw_data) Layouts[-1].addWidget(self.rawPlotBtn) for mod in self.modalities: Layouts[-1].addWidget(QtWidgets.QLabel(' ' + mod + ':', self)) setattr(self, mod + 'Plot', QtWidgets.QDoubleSpinBox(self)) getattr(self, mod + 'Plot').setValue(1) getattr(self, mod + 'Plot').setSuffix(' (%-fig)') Layouts[-1].addWidget(getattr(self, mod + 'Plot')) ### PLOT FIELD OF VIEW if 'ophys' in self.parent.nwbfile.processing: Layouts.append(QtWidgets.QHBoxLayout()) self.fovPlotBtn = QtWidgets.QPushButton( 'plot imaging field of view ', self) self.fovPlotBtn.setFixedWidth(250) self.fovPlotBtn.clicked.connect(self.plot_FOV) Layouts[-1].addWidget(self.fovPlotBtn) Layouts[-1].addWidget( QtWidgets.QLabel(10 * ' ' + 'FOV type:', self)) # SEPARATOR self.fovType = QtWidgets.QComboBox(self) self.fovType.addItems(['meanImg', 'meanImgE', 'max_proj']) Layouts[-1].addWidget(self.fovType) Layouts[-1].addWidget(QtWidgets.QLabel(10 * ' ' + 'NL:', self)) # SEPARATOR self.fovNL = QtWidgets.QSpinBox(self) self.fovNL.setValue(1) Layouts[-1].addWidget(self.fovNL) Layouts[-1].addWidget( QtWidgets.QLabel(10 * ' ' + 'colormap:', self)) # SEPARATOR self.fovMap = QtWidgets.QComboBox(self) self.fovMap.addItems( ['viridis', 'grey', 'white_to_green', 'black_to_green']) Layouts[-1].addWidget(self.fovMap) Layouts[-1].addWidget(QtWidgets.QLabel(' label:', self)) # SEPARATOR self.fovLabel = QtGui.QLineEdit() Layouts[-1].addWidget(self.fovLabel) ### PLOT CORRELATIONS Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget(QtWidgets.QLabel(50 * '<->', self)) # SEPARATOR Layouts[-1].addWidget(QtWidgets.QLabel(' -* CORRELATIONS *-', self)) Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget(QtWidgets.QLabel(50 * '<->', self)) # SEPARATOR # varied keys Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget( QtWidgets.QLabel(' -* STIMULI PARAMETERS *-', self)) for key in self.varied_parameters: Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget(QtWidgets.QLabel('--- %s ' % key, self)) setattr(self, '%s_plot' % key, QtWidgets.QComboBox(self)) getattr(self, '%s_plot' % key).addItems([ 'merged', 'single-value', 'column-panels', 'row-panels', 'color-coded', 'x-axis', 'N/A' ]) Layouts[-1].addWidget(getattr(self, '%s_plot' % key)) setattr(self, '%s_values' % key, QtWidgets.QComboBox(self)) getattr( self, '%s_values' % key).addItems(['full', 'custom'] + [str(s) for s in self.varied_parameters[key]]) Layouts[-1].addWidget(getattr(self, '%s_values' % key)) Layouts[-1].addWidget(QtWidgets.QLabel(10 * ' ', self)) Layouts[-1].addWidget(QtWidgets.QLabel(' custom values : ', self)) setattr(self, '%s_customvalues' % key, QtWidgets.QLineEdit(self)) getattr(self, '%s_customvalues' % key).setMaximumWidth(150) Layouts[-1].addWidget(getattr(self, '%s_customvalues' % key)) Layouts[-1].addWidget(QtWidgets.QLabel(30 * ' ', self)) Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget(QtWidgets.QLabel(50 * '<->', self)) # SEPARATOR # figure props type Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget( QtWidgets.QLabel(' -* RESPONSES *- ', self)) self.responseType = QtWidgets.QComboBox(self) self.responseType.addItems( ['stim-evoked-traces', 'mean-stim-evoked', 'integral-stim-evoked']) Layouts[-1].addWidget(self.responseType) Layouts[-1].addWidget(QtWidgets.QLabel(' color: ', self)) self.color = QtGui.QLineEdit() Layouts[-1].addWidget(self.color) Layouts[-1].addWidget(QtWidgets.QLabel(' label: ', self)) self.label = QtGui.QLineEdit() Layouts[-1].addWidget(self.label) Layouts[-1].addWidget(QtWidgets.QLabel(' n-label: ', self)) self.nlabel = QtGui.QLineEdit() self.nlabel.setText('1') Layouts[-1].addWidget(self.nlabel) Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget( QtWidgets.QLabel(' pre-stimulus window (s):', self)) self.preWindow = QtGui.QLineEdit() self.preWindow.setText('[-1,0]') Layouts[-1].addWidget(self.preWindow) Layouts[-1].addWidget( QtWidgets.QLabel(' post-stimulus window (s):', self)) self.postWindow = QtGui.QLineEdit() self.postWindow.setText('[1,4]') Layouts[-1].addWidget(self.postWindow) Layouts.append(QtWidgets.QHBoxLayout()) self.baseline = QtGui.QCheckBox("baseline substraction") Layouts[-1].addWidget(self.baseline) Layouts[-1].addWidget(QtWidgets.QLabel(10 * ' ', self)) self.withStatTest = QtGui.QCheckBox("with stat. test") Layouts[-1].addWidget(self.withStatTest) Layouts.append(QtWidgets.QHBoxLayout()) self.compute = QtWidgets.QPushButton('compute episodes', self) self.compute.setFixedWidth(200) self.compute.clicked.connect(self.compute_episodes) Layouts[-1].addWidget(self.compute) self.plotBtn = QtWidgets.QPushButton(' -* PLOT *- ', self) self.plotBtn.setFixedWidth(200) self.plotBtn.clicked.connect(self.plot) Layouts[-1].addWidget(self.plotBtn) Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget(QtWidgets.QLabel(50 * '<->', self)) # SEPARATOR Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget( QtWidgets.QLabel(' -* Figure Properties *- ', self)) self.fig_presets = QtWidgets.QComboBox(self) self.fig_presets.setFixedWidth(400) self.fig_presets.addItems( ['', 'raw-traces-preset', 'IO-curves-preset']) Layouts[-1].addWidget(self.fig_presets) Layouts[-1].addWidget(QtWidgets.QLabel('Panel size: ', self)) self.panelsize = QtGui.QLineEdit() self.panelsize.setText('(1,1)') Layouts[-1].addWidget(self.panelsize) # self.samplingBox = QtWidgets.QDoubleSpinBox(self) self.samplingBox.setValue(dt_sampling) self.samplingBox.setMaximum(500) self.samplingBox.setMinimum(0.1) self.samplingBox.setSuffix(' (ms) sampling') Layouts[-1].addWidget(self.samplingBox) # plot type Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget(QtWidgets.QLabel('Plot type: ', self)) self.plotbox = QtWidgets.QComboBox(self) self.plotbox.addItems(['2d-plot', 'polar-plot', 'bar-plot']) Layouts[-1].addWidget(self.plotbox) Layouts[-1].addWidget(QtWidgets.QLabel(10 * ' ', self)) self.plotbox2 = QtWidgets.QComboBox(self) self.plotbox2.addItems(['line', 'dot']) Layouts[-1].addWidget(self.plotbox2) Layouts[-1].addWidget(QtWidgets.QLabel(10 * ' ', self)) self.withSTDbox = QtGui.QCheckBox("with s.d.") Layouts[-1].addWidget(self.withSTDbox) Layouts[-1].addWidget(QtWidgets.QLabel(10 * ' ', self)) self.stim = QtGui.QCheckBox("with stim. ") Layouts[-1].addWidget(self.stim) Layouts[-1].addWidget(QtWidgets.QLabel(10 * ' ', self)) self.screen = QtGui.QCheckBox("with screen inset ") Layouts[-1].addWidget(self.screen) Layouts[-1].addWidget(QtWidgets.QLabel(10 * ' ', self)) self.annot = QtGui.QCheckBox("with annot. ") Layouts[-1].addWidget(self.annot) Layouts[-1].addWidget(QtWidgets.QLabel(10 * ' ', self)) self.axis = QtGui.QCheckBox("with axis") Layouts[-1].addWidget(self.axis) Layouts[-1].addWidget(QtWidgets.QLabel(10 * ' ', self)) self.grid = QtGui.QCheckBox("with grid") Layouts[-1].addWidget(self.grid) # X-scales Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget(QtWidgets.QLabel('X-SCALE --- ', self)) Layouts[-1].addWidget(QtWidgets.QLabel('x-min:', self)) self.xmin = QtGui.QLineEdit() self.xmin.setText('') Layouts[-1].addWidget(self.xmin) Layouts[-1].addWidget(QtWidgets.QLabel('x-max:', self)) self.xmax = QtGui.QLineEdit() self.xmax.setText('') Layouts[-1].addWidget(self.xmax) Layouts[-1].addWidget(QtWidgets.QLabel('x-bar:', self)) self.xbar = QtGui.QLineEdit() self.xbar.setText('') Layouts[-1].addWidget(self.xbar) Layouts[-1].addWidget(QtWidgets.QLabel('x-barlabel:', self)) self.xbarlabel = QtGui.QLineEdit() self.xbarlabel.setText('') Layouts[-1].addWidget(self.xbarlabel) # Y-scales Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget(QtWidgets.QLabel('Y-SCALE --- ', self)) Layouts[-1].addWidget(QtWidgets.QLabel('y-min:', self)) self.ymin = QtGui.QLineEdit() self.ymin.setText('') Layouts[-1].addWidget(self.ymin) Layouts[-1].addWidget(QtWidgets.QLabel('y-max:', self)) self.ymax = QtGui.QLineEdit() self.ymax.setText('') Layouts[-1].addWidget(self.ymax) Layouts[-1].addWidget(QtWidgets.QLabel('y-bar:', self)) self.ybar = QtGui.QLineEdit() self.ybar.setText('') Layouts[-1].addWidget(self.ybar) Layouts[-1].addWidget(QtWidgets.QLabel('y-barlabel:', self)) self.ybarlabel = QtGui.QLineEdit() self.ybarlabel.setText('') Layouts[-1].addWidget(self.ybarlabel) # curve Layouts.append(QtWidgets.QHBoxLayout()) # self.Layout12.addWidget(self.baselineCB) Layouts.append(QtWidgets.QHBoxLayout()) Layouts[-1].addWidget(QtWidgets.QLabel(50 * '<->', self)) # SEPARATOR # BUTTONS Layouts.append(QtWidgets.QHBoxLayout()) self.setBtn = QtWidgets.QPushButton('extract settings', self) self.setBtn.setFixedWidth(200) self.setBtn.clicked.connect(self.set_settings) Layouts[-1].addWidget(self.setBtn) self.rstBtn = QtWidgets.QPushButton('reset settings', self) self.rstBtn.setFixedWidth(200) self.rstBtn.clicked.connect(self.reset_settings) Layouts[-1].addWidget(self.rstBtn) Layouts.append(QtWidgets.QHBoxLayout()) self.newFig = QtWidgets.QPushButton('save as new figure', self) self.newFig.setFixedWidth(200) self.newFig.clicked.connect(self.new_fig) Layouts[-1].addWidget(self.newFig) self.append2Fig = QtWidgets.QPushButton('append to figure', self) self.append2Fig.setFixedWidth(200) self.append2Fig.clicked.connect(self.append) Layouts[-1].addWidget(self.append2Fig) self.exportBtn = QtWidgets.QPushButton('export to png', self) self.exportBtn.setFixedWidth(200) self.exportBtn.clicked.connect(self.export) Layouts[-1].addWidget(self.exportBtn) self.locBtn = QtWidgets.QComboBox(self) self.locBtn.addItems(['Desktop', 'summary']) self.locBtn.setFixedWidth(200) Layouts[-1].addWidget(self.locBtn) self.nameBtn = QtWidgets.QLineEdit(self) self.nameBtn.setText('fig') self.nameBtn.setFixedWidth(200) Layouts[-1].addWidget(self.nameBtn) self.dpi = QtWidgets.QSpinBox(self) self.dpi.setValue(300) self.dpi.setRange(50, 600) self.dpi.setSuffix(' (dpi)') self.dpi.setFixedWidth(80) Layouts[-1].addWidget(self.dpi) for l in Layouts: mainLayout.addLayout(l)
def analysis_pdf(datafile, Nmax=1000000): data = MultimodalData(datafile) stim_duration = data.metadata['Protocol-1-presentation-duration'] interval_post = [1. / 2. * stim_duration, stim_duration] interval_pre = [interval_post[0] - interval_post[1], 0] try: # find the protocol with the many-standards iprotocol_MS = np.argwhere([('many-standards' in p) for p in data.protocols])[0][0] # find the protocol with the oddball-1 iprotocol_O1 = np.argwhere([('oddball-1' in p) for p in data.protocols])[0][0] # find the protocol with the oddball-2 iprotocol_O2 = np.argwhere([('oddball-2' in p) for p in data.protocols])[0][0] # mismatch negativity angles MM_angles = [ data.metadata['Protocol-%i-angle-redundant (deg)' % (1 + iprotocol_O1)], data.metadata['Protocol-%i-angle-deviant (deg)' % (1 + iprotocol_O1)] ] # DATA = {'stim_duration': stim_duration} DATA[str(int(MM_angles[0]))] = { 'iprotocol_control': iprotocol_MS, 'control': [], 'redundant': [], 'deviant': [], 'responsive': [] } DATA[str(int(MM_angles[1]))] = { 'iprotocol_control': iprotocol_MS, 'control': [], 'redundant': [], 'deviant': [], 'responsive': [] } DATA[str( int(data.metadata[ 'Protocol-%i-angle-redundant (deg)' % (1 + iprotocol_O1)]))]['iprotocol_redundant'] = iprotocol_O1 DATA[str( int(data.metadata[ 'Protocol-%i-angle-deviant (deg)' % (1 + iprotocol_O1)]))]['iprotocol_deviant'] = iprotocol_O1 DATA[str( int(data.metadata[ 'Protocol-%i-angle-redundant (deg)' % (1 + iprotocol_O2)]))]['iprotocol_redundant'] = iprotocol_O2 DATA[str( int(data.metadata[ 'Protocol-%i-angle-deviant (deg)' % (1 + iprotocol_O2)]))]['iprotocol_deviant'] = iprotocol_O2 # find the angle for the redundant and deviant conditions print(data.metadata['Protocol-3-angle-redundant (deg)'], data.metadata['Protocol-3-angle-deviant (deg)']) Nresp, Nresp_selective, SIs = 0, 0, [] pdf_OS = PdfPages( os.path.join( summary_pdf_folder(datafile), '%s-orientation_selectivity.pdf' % data.protocols[iprotocol_MS])) pdf_MSO = PdfPages( os.path.join( summary_pdf_folder(datafile), '%s-mismatch_selective_only.pdf' % data.protocols[iprotocol_MS])) pdf_MA = PdfPages( os.path.join(summary_pdf_folder(datafile), '%s-mismatch_all.pdf' % data.protocols[iprotocol_MS])) for roi in np.arange(data.iscell.sum())[:Nmax]: print(' - MMN analysis for ROI #%i / %i' % (roi + 1, data.iscell.sum())) ## ORIENTATION SELECTIVITY ANALYSIS fig, SI, responsive, responsive_angles = ODS.OS_ROI_analysis( data, roiIndex=roi, iprotocol=iprotocol_MS, stat_test_props=dict(interval_pre=interval_pre, interval_post=interval_post, test='wilcoxon', positive=True), with_responsive_angles=True) pdf_OS.savefig() # saves the current figure into a pdf page plt.close() if responsive: Nresp += 1 SIs.append(SI) EPISODES = EpisodeResponse( data, protocol_id=None, # means all quantity='CaImaging', subquantity='dF/F', roiIndex=roi) fig, AX = ge.figure(axes=(2, 1), wspace=3., right=10.) responsive_for_at_least_one = False ge.annotate(fig, 'ROI #%i' % (roi + 1), (0.02, 0.98), va='top') for angle, ax in zip(MM_angles, AX): DATA[str(int(angle))]['responsive'].append( False) # False by default ge.title(ax, '$\\theta$=%.1f$^{o}$' % angle) for ik, key, color in zip(range(3), ['control', 'redundant', 'deviant'], ['k', ge.blue, ge.red]): cond = data.get_stimulus_conditions([ np.array(DATA[str(int(angle))]['iprotocol_%s' % key]), np.array([float(angle)]) ], ['protocol_id', 'angle'], None)[0] ge.plot(EPISODES.t, EPISODES.resp[cond, :].mean(axis=0), sy=EPISODES.resp[cond, :].std(axis=0), color=color, ax=ax, no_set=True) ge.annotate(ax, ik * '\n' + '%s, n=%i' % (key, np.sum(cond)), (0.98, 1.), color=color, va='top', size='small') # storing for population analysis: DATA[str(int(angle))][key].append( EPISODES.resp[cond, :].mean(axis=0)) if angle in responsive_angles: responsive_for_at_least_one = True DATA[str(int( angle))]['responsive'][-1] = True # shift to True ge.set_plot(ax, xlabel='time (s)', ylabel='dF/F') pdf_MA.savefig() if responsive_for_at_least_one: pdf_MSO.savefig() plt.close() for angle in MM_angles: fig, AX = modulation_summary_panel(EPISODES.t, DATA[str(int(angle))], title='$\\theta$=%.1f$^{o}$' % angle) pdf_MA.savefig() plt.close() fig, AX = modulation_summary_panel(EPISODES.t, DATA[str(int(angle))], title='$\\theta$=%.1f$^{o}$' % angle, responsive_only=True) pdf_MSO.savefig() plt.close() # orientation selectivity summary ODS.summary_fig(Nresp, data.iscell.sum(), SIs, label='Orient. Select. Index') pdf_OS.savefig() # saves the current figure into a pdf page plt.close() # modulation summary for pdf in [pdf_OS, pdf_MSO, pdf_MA]: pdf.close() print('[ok] mismatch negativity analysis saved in: "%s" ' % summary_pdf_folder(datafile)) except BaseException as be: print('\n', be) print('---------------------------------------') print(' /!\ Pb with mismatch negativity analysis /!\ ')