예제 #1
0
imputer_text.fit(train_df=df_train,
                 learning_rate=1e-4,
                 num_epochs=50,
                 final_fc_hidden_units=[512])

#Fit a Model With HPO
imputer_text = SimpleImputer(
    input_columns=['title', 'text'],
    output_column='finish',
    output_path='imputer_model',
)

imputer_text.fit_hpo(train_df=df_train,
                     num_epochs=50,
                     learning_rate_candidates=[1e-3, 1e-4],
                     final_fc_hidden_units_candidates=[[100]],
                     num_hash_bucket_candidates=[2**10, 2**15],
                     tokens_candidates=['chars', 'words'])

#------------------------------------------------------------------------------------
'''
Numerical Data
'''
#Generate synthetic numerical data
numeric_data = np.random.uniform(-np.pi, np.pi, (n_samples, ))
df = pd.DataFrame({
    'x':
    numeric_data,
    '*2':
    numeric_data * 2. + np.random.normal(0, .1, (n_samples, )),
    '**2':
예제 #2
0
# Print overall classification report
print(
    classification_report(predictions['finish'],
                          predictions['finish_imputed']))

# ------------------------------------------------------------------------------------
"""
Run SimpleImputer with hyperparameter optimization
"""
# Initialize a SimpleImputer model
imputer = SimpleImputer(input_columns=['title', 'text'],
                        output_column='finish',
                        output_path='imputer_model')

# Fit an imputer model with default list of hyperparameters
imputer.fit_hpo(train_df=df_train)

# Fit an imputer model with customized HPO
imputer.fit_hpo(train_df=df_train,
                num_epochs=5,
                patience=3,
                learning_rate_candidates=[1e-3, 1e-4],
                num_hash_bucket_candidates=[2**15],
                tokens_candidates=['words', 'chars'])

# ------------------------------------------------------------------------------------
"""
Load saved model and get metrics from SimpleImputer
"""
# Load saved model
imputer = SimpleImputer.load('./imputer_model')
예제 #3
0
                             tokens='chars')

imputer_text.fit(train_df=df_train,
                 learning_rate=1e-4,
                 num_epochs=5,
                 final_fc_hidden_units=[512])

# Fit a Model With HPO
imputer_text = SimpleImputer(
    input_columns=['title', 'text'],
    output_column='finish',
    output_path='imputer_model',
)

imputer_text.fit_hpo(train_df=df_train,
                     num_epochs=5,
                     num_hash_bucket_candidates=[2**10, 2**15],
                     tokens_candidates=['chars', 'words'])

# ------------------------------------------------------------------------------------
"""
Numerical Data
"""
# Generate synthetic numerical data
n_samples = 100
numeric_data = np.random.uniform(-np.pi, np.pi, (n_samples, ))
df = pd.DataFrame({
    'x':
    numeric_data,
    '*2':
    numeric_data * 2. + np.random.normal(0, .1, (n_samples, ))
})