예제 #1
0
    def test_can_load_dataset_with_exact_image_info(self):
        source_dataset = Dataset.from_iterable(
            [
                DatasetItem(id=1,
                            subset='train',
                            image=Image(path='1.jpg', size=(10, 15)),
                            annotations=[
                                Bbox(0, 2, 4, 2, label=2),
                                Bbox(3, 3, 2, 3, label=4),
                            ]),
            ],
            categories={
                AnnotationType.label:
                LabelCategories.from_iterable('label_' + str(i)
                                              for i in range(10)),
            })

        with TestDir() as test_dir:
            YoloConverter.convert(source_dataset, test_dir)

            parsed_dataset = Dataset.import_from(test_dir,
                                                 'yolo',
                                                 image_info={'1': (10, 15)})

            compare_datasets(self, source_dataset, parsed_dataset)
예제 #2
0
    def test_can_save_and_load(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id=1, subset='train', image=np.ones((8, 8, 3)),
                annotations=[
                    Bbox(0, 2, 4, 2, label=2),
                    Bbox(0, 1, 2, 3, label=4),
                ]),
            DatasetItem(id=2, subset='train', image=np.ones((10, 10, 3)),
                annotations=[
                    Bbox(0, 2, 4, 2, label=2),
                    Bbox(3, 3, 2, 3, label=4),
                    Bbox(2, 1, 2, 3, label=4),
                ]),

            DatasetItem(id=3, subset='valid', image=np.ones((8, 8, 3)),
                annotations=[
                    Bbox(0, 1, 5, 2, label=2),
                    Bbox(0, 2, 3, 2, label=5),
                    Bbox(0, 2, 4, 2, label=6),
                    Bbox(0, 7, 3, 2, label=7),
                ]),
        ], categories={
            AnnotationType.label: LabelCategories.from_iterable(
                'label_' + str(i) for i in range(10)),
        })

        with TestDir() as test_dir:
            YoloConverter.convert(source_dataset, test_dir, save_images=True)
            parsed_dataset = Dataset.import_from(test_dir, 'yolo')

            compare_datasets(self, source_dataset, parsed_dataset)
예제 #3
0
    def test_can_save_dataset_with_image_info(self):
        source_dataset = Dataset.from_iterable(
            [
                DatasetItem(id=1,
                            subset='train',
                            image=Image(path='1.jpg', size=(10, 15)),
                            annotations=[
                                Bbox(0, 2, 4, 2, label=2),
                                Bbox(3, 3, 2, 3, label=4),
                            ]),
            ],
            categories={
                AnnotationType.label:
                LabelCategories.from_iterable('label_' + str(i)
                                              for i in range(10)),
            })

        with TestDir() as test_dir:
            YoloConverter.convert(source_dataset, test_dir)

            save_image(osp.join(test_dir, 'obj_train_data', '1.jpg'),
                       np.ones((10, 15, 3)))  # put the image for dataset
            parsed_dataset = Dataset.import_from(test_dir, 'yolo')

            compare_datasets(self, source_dataset, parsed_dataset)
예제 #4
0
    def test_can_save_dataset_with_cyrillic_and_spaces_in_filename(self):
        source_dataset = Dataset.from_iterable(
            [
                DatasetItem(id='кириллица с пробелом',
                            subset='train',
                            image=np.ones((8, 8, 3)),
                            annotations=[
                                Bbox(0, 2, 4, 2, label=2),
                                Bbox(0, 1, 2, 3, label=4),
                            ]),
            ],
            categories={
                AnnotationType.label:
                LabelCategories.from_iterable('label_' + str(i)
                                              for i in range(10)),
            })

        with TestDir() as test_dir:
            YoloConverter.convert(source_dataset, test_dir, save_images=True)
            parsed_dataset = Dataset.import_from(test_dir, 'yolo')

            compare_datasets(self,
                             source_dataset,
                             parsed_dataset,
                             require_images=True)
예제 #5
0
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        dataset = Dataset.from_iterable([
            DatasetItem('q/1', subset='train',
                image=Image(path='q/1.JPEG', data=np.zeros((4, 3, 3)))),
            DatasetItem('a/b/c/2', subset='valid',
                image=Image(path='a/b/c/2.bmp', data=np.zeros((3, 4, 3)))),
        ], categories=[])

        with TestDir() as test_dir:
            YoloConverter.convert(dataset, test_dir, save_images=True)
            parsed_dataset = Dataset.import_from(test_dir, 'yolo')

            compare_datasets(self, dataset, parsed_dataset, require_images=True)
예제 #6
0
    def test_relative_paths(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id='1', subset='train',
                image=np.ones((4, 2, 3))),
            DatasetItem(id='subdir1/1', subset='train',
                image=np.ones((2, 6, 3))),
            DatasetItem(id='subdir2/1', subset='train',
                image=np.ones((5, 4, 3))),
        ], categories=[])

        for save_images in {True, False}:
            with self.subTest(save_images=save_images):
                with TestDir() as test_dir:
                    YoloConverter.convert(source_dataset, test_dir,
                        save_images=save_images)
                    parsed_dataset = Dataset.import_from(test_dir, 'yolo')

                    compare_datasets(self, source_dataset, parsed_dataset)
예제 #7
0
    def test_relative_paths(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id='1', subset='train',
                image=np.ones((4, 2, 3))),
            DatasetItem(id='subdir1/1', subset='train',
                image=np.ones((2, 6, 3))),
            DatasetItem(id='subdir2/1', subset='train',
                image=np.ones((5, 4, 3))),
        ], categories={
            AnnotationType.label: LabelCategories(),
        })

        for save_images in {True, False}:
            with self.subTest(save_images=save_images):
                with TestDir() as test_dir:
                    YoloConverter.convert(source_dataset, test_dir,
                        save_images=save_images)
                    parsed_dataset = YoloImporter()(test_dir).make_dataset()

                    compare_datasets(self, source_dataset, parsed_dataset)