def main(): X1_train, X2_train, Y_train, X1_test, X2_test, Y_test = davis_data.setting3_split() learner = KronRLS(X1 = X1_train, X2 = X2_train, Y = Y_train) log_regparams = range(15, 35) for log_regparam in log_regparams: learner.solve(2.**log_regparam) P = learner.predict(X1_test, X2_test) perf = cindex(Y_test, P) print("regparam 2**%d, cindex %f" %(log_regparam, perf))
def main(): X1_train, X2_train, Y_train, X1_test, X2_test, Y_test = davis_data.setting3_split() learner = TwoStepRLS(X1 = X1_train, X2 = X2_train, Y = Y_train, regparam1=1.0, regparam2=1.0) log_regparams1 = range(-8, -4) log_regparams2 = range(20,25) for log_regparam1 in log_regparams1: for log_regparam2 in log_regparams2: learner.solve(2.**log_regparam1, 2.**log_regparam2) P = learner.predict(X1_test, X2_test) perf = cindex(Y_test, P) print("regparam 2**%d 2**%d, test set cindex %f" %(log_regparam1, log_regparam2, perf)) P = learner.leave_x2_out() perf = cindex(Y_train, P) print("regparam 2**%d 2**%d, leave-column-out cindex %f" %(log_regparam1, log_regparam2, perf))
def main(): X1_train, X2_train, Y_train, X1_test, X2_test, Y_test = davis_data.setting3_split( ) learner = TwoStepRLS(X1=X1_train, X2=X2_train, Y=Y_train, regparam1=1.0, regparam2=1.0) log_regparams1 = range(-8, -4) log_regparams2 = range(20, 25) for log_regparam1 in log_regparams1: for log_regparam2 in log_regparams2: learner.solve(2.**log_regparam1, 2.**log_regparam2) P = learner.predict(X1_test, X2_test) perf = cindex(Y_test, P) print("regparam 2**%d 2**%d, test set cindex %f" % (log_regparam1, log_regparam2, perf)) P = learner.leave_x2_out() perf = cindex(Y_train, P) print("regparam 2**%d 2**%d, leave-column-out cindex %f" % (log_regparam1, log_regparam2, perf))