def upload_new_meeting(): meeting_name = request.form.get("meeting_name") meeting_date = request.form.get("date") meeting_id = uuid.uuid4() # get file file = request.files['file'] filename = secure_filename(file.filename) filepath = os.path.join(UPLOAD_DIRECTORY, filename) file.save(filepath) summary, key_phrases, entity_recog, entity_linking, sentiment_analysis = Analytics(filepath).meeting_analytics() resp_dict = { "meeting_id": str(meeting_id), "date": str(datetime.datetime.now()), "attendees": "Alex, Jason, Safeerah, Jennifer", "summary": summary, "key_phrases": key_phrases, "entity_recog": entity_recog, "entity_linking": entity_linking, "sentiment_analysis": sentiment_analysis } add_data(str(meeting_id), json.dumps(resp_dict)) resp = jsonify(resp_dict) resp.headers['Access-Control-Allow-Origin'] = '*' return resp
def add(): first_name = request.form['first_name'] last_name = request.form['last_name'] e_mail = request.form['e_mail'] country = request.form['country'] city = request.form['city'] friend_relative = request.form['friend_relative'] google = request.form['google'] facebook = request.form['facebook'] twitter = request.form['twitter'] search_engine = request.form['search_engine'] other = request.form['other'] other_text = request.form['other_text'] # Checks if the e-mail has been entered already if db.email_exists(e_mail): return render_template("already_registered.html") else: db.add_data(first_name, last_name, e_mail, country, city, friend_relative, google, facebook, twitter, search_engine, other, other_text) # Posts a tweet tweet(first_name, last_name) return render_template("registry_complete.html", tweet_list=twitter_integration.get_tweet_list())
def stored_inferences(): if request.method == 'POST': if not request.is_json: return jsonify({"msg": "Missing JSON in request"}), 400 add_data(request.get_json()) return 'Inference Added' return render_template("stored_inferences.html", data=get_data())
def __on_add(self, evt): add_data_frame = AddDataFrame(self) if add_data_frame.ShowModal() == wx.ID_OK: data = add_data_frame.GetData() db.add_data(data[0], data[1], data[2]) self.list_judul.Insert(str(data[0] + ' - ' + data[1]), 0) self.list_judul.Refresh() self.list_judul.SetStringSelection(str(data[0] + ' - ' + data[1]), True) db.commit() add_data_frame.Destroy()
def train_char(training_char): controller = Leap.Controller() for t in range(NUM_SAMPLES): time.sleep(SAMPLE_DELAY) sample = get_hand_position(controller, True) while len(sample) != NUM_FEATURES: print "Please place only right hand in view" sample = get_hand_position(controller, True) print sample add_data(sign=training_char, **sample) print "Done training"
def add(): st.subheader("Add Items") #Layout: col1, col2 = st.beta_columns(2) with col1: value1 = st.text_area("Col 1") with col2: value2 = st.selectbox("Status", ["Verified", "Pending", "False"]) input_time = st.date_input("Time") if st.button("Submit"): add_data(value1, value2, input_time) st.success("Successfully Sent Data:{}".format(value1))
def train_char(model_name, training_word): for t in range(NUM_SAMPLES): time.sleep(SAMPLE_DELAY) sample = get_hand_position(controller, True) while len(sample) != NUM_FEATURES: emit(ACTION_TRAINING_ERROR, "Please place only right hand in view") # print "Please place only right hand in view" sample = get_hand_position(controller, True) print sample if t % 10 == 0: emit(ACTION_TRAINING_INPROGRESS, str(t) + "/" + str(NUM_SAMPLES)) add_data(model_name=model_name, sign=training_word, **sample) emit(ACTION_TRAINING_DONE, "Done training")
def search_data(self, search_name): if not self.template_search_url: return url = self.template_search_url.format(self.host, search_name.lower()) response = self.get_response(url) found_url = self.parse_found_url(response, search_name.lower()) if not found_url: print('[ERROR] Данный товар не найден') return response_product = self.get_response(found_url) data_product = self.parse_data_product(response_product) print('[INFO] Продукт сохранён') db.add_data(data_product)
def signup(): error = None if request.method == 'POST': if request.form['username'] == '' or request.form[ 'password'] == '' or request.form['contact'] == '': error = 'Invalid Credentials. Please try again.' else: name = request.form['username'] passwd = hash(request.form['password']) contact = request.form['contact'] sign = request.form['username'] + request.form['contact'] timestamp = datetime.now() add_data(name, passwd, contact, sign, timestamp) return redirect(url_for('login')) return render_template('signup.html', error=error)
def write_fresh_data(): """ Getting a new data from parser and record to DB """ db.get_connection() for currency in db.currencies: logging.info(f"Parse {currency} rates and write into db") # collect a new data fresh = parser.parse(currency) # write to db i = 0 while i < len(fresh[0]): db.add_data(currency, fresh[0][i], fresh[1][i], fresh[2][i], fresh[3]) i = i + 1 logging.info(f"Finish {currency} parse/record task")
def inference(): if request.method == 'POST': req = [int(x) for x in request.form.values()] final_features = [np.array(req)] data = request.form.to_dict() if not req: flash('Missing values') else: price_prediction = model_api.predict(final_features).tolist()[0] result = dict() result["input"] = req result["output"] = price_prediction data.update({'price_prediction': result['output']}) add_data(data) app.logger.info("model_output: " + str(result)) return render_template('inference.html', price_prediction=price_prediction) return render_template("inference.html")
async def add_item_data(message: types.Message, state: FSMContext): """Добавляет новый товар в базу данных""" global item_data item_data = message.text await state.update_data(answer2=item_data) try: init_db() add_data(item_name, item_description, item_price, item_data, photo_id) logger.info('Product data added successfully') await message.answer_photo(photo=photo_id, caption='Товар успешно добавлен!\n\n' 'Название - {name}\n' 'Цена - {price}\n' 'Описание - {description}\n' 'Данные - {data}'.format( name=item_name, price=item_price, description=item_description, data=item_data)) except Exception as e: logger.info('Product data added successfully' + str(e)) await message.answer('Возникла ошибка при добавлении товара') await state.finish()
def save_data(self): logger.info(f"current row {self.get_current_data(self.date)}") logger.info(f"date {self.date}") logger.info(f"local date {self.date_local_tz}") datetime_object = datetime.strptime(self.date, '%Y-%m-%dT%H:%M:%SZ') datetime_object_local = datetime.strptime(self.date_local_tz, '%Y-%m-%dT%H:%M:%S%z') logger.info(f"datetime object {datetime_object}") logger.info(f"datetime local {datetime_object_local}") if not self.get_current_data(self.date): send_new_alert = self.alert_send_check() if send_new_alert[0]: messages.send_message(send_new_alert[1], CFG.TO_NUMBERS) saved_row = db.add_data( datetime_object, self.hour_num, self.min_num, self.settlement_point, self.price_type, self.price_ckwh, self.value_score, self.mean_price_ckwh, self.diff_mean_ckwh, self.high_ckwh, self.low_ckwh, self.std_dev_ckwh, self.price_display, self.price_display_sign, datetime_object_local) logger.info(f"saved data {saved_row}") else: logger.info(f"row exists")
def add(): result = db.add_data(request.form['long'], request.form['short']) return render_template('index.html', long=request.form['long'], short=request.form['short'], result=result)
def bar_edit(bar_path): current_user = session.get('current_user') user = db.db_session.query( db.User).filter(db.User.u_name == current_user).first() if request.method == 'GET': if bar_path == '0': bar = [] bar_id = 0 bar_path = 0 bar_head_img = 'img/bar_head_img.png' bar_banner_img = 'img/bar_banner_img.jpg' else: bar = db.db_session.query( db.Bar).filter(db.Bar.b_path == bar_path).first() bar_id = bar.b_id bar_path = bar.b_path bar_head_img = bar.b_head_img bar_banner_img = bar.b_banner_img return render_template("bar_edit.html", user=user, bar=bar, bar_id=bar_id, bar_path=bar_path, bar_head_img=bar_head_img, bar_banner_img=bar_banner_img) else: bar = db.db_session.query( db.Bar).filter(db.Bar.b_path == bar_path).first() b_id = request.form.get('b_id') b_name = request.form.get('b_name') b_path = request.form.get('b_path') b_topic = request.form.get('b_topic') b_statement = request.form.get('b_statement') if bar: b_head_img = bar.b_head_img b_banner_img = bar.b_banner_img else: bar_head_img = 'img/bar_head_img.png' bar_banner_img = 'img/bar_banner_img.jpg' head = request.files.get('b_head_img') if head: b_head_img_data = head.read() head_uuid = str(uuid.uuid1()) b_head_img = 'bar_head/' + head_uuid + '.jpg' with open('static/' + b_head_img, 'wb+') as f: f.write(b_head_img_data) im_head = tools.change_img_dbi('static/' + b_head_img, 100, 100) im_head.save('static/' + b_head_img) banner = request.files.get('b_banner_img') if banner: b_banner_img_data = banner.read() banner_uuid = str(uuid.uuid1()) b_banner_img = 'bar_banner/' + banner_uuid + '.jpg' with open('static/' + b_banner_img, 'wb+') as f: f.write(b_banner_img_data) im_banner = tools.change_img_dbi('static/' + b_banner_img, 1024, 188) im_banner.save('static/' + b_banner_img) if b_id == '0': new_bar = db.Bar(b_name=b_name, b_path=b_path, b_topic=b_topic, b_head_img=b_head_img, b_banner_img=b_banner_img, b_statement=b_statement) db.add_data(new_bar) db.add_data( db.Bar_relation(u_id=user.u_id, b_id=new_bar.b_id, relation=0)) else: db.db_session.query(db.Bar).filter(db.Bar.b_id == b_id).update({ db.Bar.b_name: b_name, db.Bar.b_path: b_path, db.Bar.b_topic: b_topic, db.Bar.b_head_img: b_head_img, db.Bar.b_banner_img: b_banner_img, db.Bar.b_statement: b_statement }) db.db_session.commit() return redirect('/bar/' + b_path + '/')
def process_data(model, emb_name, md, model_name, folds): cv = KFold(len(X), n_folds=folds, shuffle=True) results = [] y_pred_list = [] count = 1 for traincv, testcv in cv: print("\n--------Fold {}--------\n".format(count)) X_test, X_train, y_test, y_train = X.iloc[testcv], X.iloc[ traincv], y.iloc[testcv], y.iloc[traincv] train_essays = X_train['essay'] test_essays = X_test['essay'] sentences = [] for essay in train_essays: # Obtaining all sentences from the training essays. sentences += utl.essay_to_sentences(essay, remove_stopwords=True) print("Training Word2Vec Model...") clean_train_essays = [] # Generate training and testing data word vectors. for essay_v in train_essays: clean_train_essays.append( utl.essay_to_wordlist(essay_v, remove_stopwords=True)) trainDataVecs = utl.getAvgFeatureVecs(clean_train_essays, model, num_features) clean_test_essays = [] for essay_v in test_essays: clean_test_essays.append( utl.essay_to_wordlist(essay_v, remove_stopwords=True)) testDataVecs = utl.getAvgFeatureVecs(clean_test_essays, model, num_features) trainDataVecs = np.array(trainDataVecs) testDataVecs = np.array(testDataVecs) # Reshaping train and test vectors to 3 dimensions. (1 represents one timestep) trainDataVecs = np.reshape( trainDataVecs, (trainDataVecs.shape[0], 1, trainDataVecs.shape[1])) testDataVecs = np.reshape( testDataVecs, (testDataVecs.shape[0], 1, testDataVecs.shape[1])) rnn_model = md(num_features) plot_model(rnn_model, to_file=output_dir + '/{}.eps'.format(model_name)) rnn_model.fit(trainDataVecs, y_train, batch_size=batch_size, epochs=epochs) y_pred = rnn_model.predict(testDataVecs) # Round y_pred to the nearest integer. y_pred = np.around(y_pred) # Evaluate the model on the evaluation metric. "Quadratic mean averaged Kappa" result = cohen_kappa_score(y_test.values, y_pred, weights='quadratic') print("Kappa Score: {}".format(result)) results.append(result) # Save weights weight_name = emb_name + "_" + model_name + "_" + str( folds) + "_" + str(count) + ".h5" rnn_model.save('./model_weights/{}'.format(weight_name)) # add data to db db.add_data(emb_name, model_name, folds, count, result, weight_name) count += 1 print("Average Kappa score after a 5-fold cross validation: ", np.around(np.array(results).mean(), decimals=4))
def repeat(): type_repeat = input('Do you wanna add some more? Y or N \n') if type_repeat in ['y', 'Y', 'YES', 'yes']: db.add_data() else: db.entry_point()
def putData(self): add_data(self.username, self.password, self.cont_num, self.sig, self.time)