예제 #1
0
def train_shared_model(agent_params,env_params,training_params,id,actor,critic):
    actor.train()
    critic.train()
    pid = os.getpid()
    print(f"Intiantiating process PID {pid}")
    env = Poker(env_params)
    nS = env.state_space
    nO = env.observation_space
    nA = env.action_space
    nB = env.betsize_space
    nC = nA - 2 + nB
    print_every = (training_params['epochs']+1) // 5
    seed = 154
    agent = ParallelAgent(nS,nO,nA,nB,seed,agent_params,actor,critic)
    training_data = copy.deepcopy(training_params['training_data'])
    for e in range(1,training_params['epochs']+1):
        last_state,state,obs,done,mask,betsize_mask = env.reset()
        while not done:
            if env.game == pdt.GameTypes.HISTORICALKUHN:
                actor_outputs = agent(state,mask,betsize_mask) if env.rules.betsize == True else agent(state,mask)
            else:
                actor_outputs = agent(last_state,mask,betsize_mask) if env.rules.betsize == True else agent(last_state,mask)
            last_state,state,obs,done,mask,betsize_mask = env.step(actor_outputs)
        ml_inputs = env.ml_inputs()
        agent.learn(ml_inputs)
        ml_inputs = detach_ml(ml_inputs)
        for position in ml_inputs.keys():
            training_data[position].append(ml_inputs[position])
        if id == 0 and e % print_every == 0:
            print(f'PID {pid}, Epoch {e}')
    mongo = MongoDB()
    mongo.clean_db()
    mongo.store_data(training_data,env.db_mapping,training_params['training_round'],env.game,id,training_params['epochs'])
예제 #2
0
 # return_dict = manager.dict()
 # online training
 seed = 123
 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 actor = env_networks['actor'](seed, nS, nA, nB, agent_params)
 critic = env_networks['critic'][args.critic](seed, nS, nA, nB,
                                              agent_params)
 del env
 actor.share_memory()  #.to(device)
 critic.share_memory()  #.to(device)
 processes = []
 num_processes = mp.cpu_count()
 if args.clean:
     print('Cleaning db')
     mongo = MongoDB()
     mongo.clean_db()
     del mongo
 for i in range(num_processes):  # No. of processes
     p = mp.Process(target=train_shared_model,
                    args=(agent_params, env_params, training_params, i,
                          actor, critic))
     p.start()
     processes.append(p)
 for p in processes:
     p.join()
 basepath = os.path.abspath(sys.argv[0])
 torch.save(
     actor.state_dict(),
     os.path.join(basepath, 'checkpoints/Historical_kuhn' + '_actor'))
 torch.save(
     critic.state_dict(),