def test(stock_codes): j = 0 for code, row in stock_codes.iterrows(): name = row["code_name"] if check_name(name) and DbMgr.get_stock_count(code) > 300 and StockMgr.check_condition(code): print(j, name, code) j += 1
def keras_predict(stock_codes, col): j = 0 for code, row in stock_codes.iterrows(): name = row["code_name"] if check_name(name) and DbMgr.get_stock_count(code) > 300 and StockMgr.check_condition(code): print(j, name, code) StockMgr.keras_train(code, col) j += 1
def all_train(stock_codes): j = 0 for code, row in stock_codes.iterrows(): name = row["code_name"] if check_name(name) and DbMgr.get_stock_count(code) > 300: print(j, name, code) result = StockMgr.keras_train(code, "stock_close") if result: with open("keras_stock.txt", "a") as file: file.write("{}|".format(code)) j += 1
def tf_predict(stock_codes): j = 0 for code, row in stock_codes.iterrows(): name = row["code_name"] if check_name(name) and DbMgr.get_stock_count(code) > 300 and StockMgr.check_condition(code): print(j, name, code) result = StockMgr.tf_train(code, ["stock_open", "stock_high", "stock_low", "stock_volume", "stock_agency", "stock_foreigner", "stock_close"]) if result: with open("tf_stock.txt", "a") as file: file.write("{}|".format(code)) j += 1
if __name__ == "__main__": while 1: menu = print_menu() if menu == 1: i = 0 CodeMgr.collect_stock_codes() stock_codes = DbMgr.get_all_stock_code() for code, row in stock_codes.iterrows(): print(i, row["code_name"], code) i += 1 if DbMgr.exist_stock_info_db(code)[0][0] == 1: if DbMgr.get_stock_count(code) < 10: print("생성") StockMgr.collect_total_stock_info(code) else: StockMgr.collect_stock_info(code) else: print("생성") StockMgr.collect_total_stock_info(code) elif menu == 2: keras_predict(DbMgr.get_stock_code("P"), "stock_close") elif menu == 3: keras_predict(DbMgr.get_stock_code("Q"), "stock_close") elif menu == 4: tf_predict(DbMgr.get_stock_code("P")) elif menu == 5: tf_predict(DbMgr.get_stock_code("Q"))