def test_sum(self): descriptors = [ dbow.ORB([0, 1, 0, 0, 1]), dbow.ORB([1, 1, 1, 1, 1]), dbow.ORB([0, 0, 0, 1, 0]), dbow.ORB([0, 1, 0, 0, 1]), ] np.allclose(np.sum(descriptors).features, np.array([1, 3, 1, 2, 3]))
def test_mean(self): descriptors = [ dbow.ORB([0, 1, 0, 0, 1]), dbow.ORB([1, 1, 1, 1, 1]), dbow.ORB([0, 0, 0, 1, 0]), dbow.ORB([0, 1, 0, 0, 1]), ] self.assertEqual(dbow.mean_value(descriptors), dbow.ORB([0, 1, 0, 1, 1]))
def test_weight(self): descriptors = [ dbow.ORB([0, 1, 0, 0, 1]), dbow.ORB([1, 1, 1, 1, 1]), dbow.ORB([0, 0, 0, 1, 0]), dbow.ORB([0, 1, 0, 0, 1]), ] word = dbow.Word(descriptors) word.update_weight(4) self.assertEqual(word.weight, 0.0)
def test_tree(self): descriptors = [ dbow.ORB([0, 1, 0, 0, 1]), dbow.ORB([1, 1, 1, 1, 1]), dbow.ORB([0, 0, 0, 1, 0]), dbow.ORB([0, 1, 0, 0, 1]), ] root = dbow.Node(descriptors) words = dbow.initialize_tree(root, 4, 4) for i, word in enumerate(words): self.assertEqual(word.idx, i)
def test_distance(self): desc1 = dbow.ORB([0, 1, 0, 0, 1]) desc2 = dbow.ORB([1, 1, 1, 1, 1]) self.assertEqual(desc1.distance(desc2), 3)