help_ = "Number of training epochs" parser.add_argument("-e", "--epochs", help=help_, default=101, type=int) return parser.parse_args() if __name__ == '__main__': # parse arguments args = parse_args() if args is None: exit() x_train, y_train = create_dataset( 128, 128, nSlices=1000, resize=1, directory='FluidArt/') # 3 channels = RGB assert (x_train.shape[0] > 0) x_train /= 255 # plot results to make sure data looks good! fig, axs = plt.subplots(4, 4) for i in range(4): for j in range(4): axs[i, j].imshow(x_train[np.random.randint(x_train.shape[0])]) axs[i, j].axis('off') plt.show() dcgan = DCGAN(img_rows=x_train[0].shape[0], img_cols=x_train[0].shape[1],
help_ = "Number of training epochs" parser.add_argument("-e", "--epochs", help=help_, default=101, type=int) return parser.parse_args() if __name__ == '__main__': # parse arguments args = parse_args() if args is None: exit() x_train, y_train = create_dataset( 64, 64, nSlices=20, resize=0.75, directory='SoapBubble/output/') # 3 channels = RGB assert (x_train.shape[0] > 0) x_train /= 255 stds = np.array( [np.std(x_train[i].mean(2)) for i in range(x_train.shape[0])]) gmask = stds > np.percentile(stds, 25) x_train = x_train[gmask] # plot results to make sure data looks good! fig, axs = plt.subplots(10, 10) for i in range(10): for j in range(10):
from dcgan import DCGAN, create_dataset def parse_args(): parser = argparse.ArgumentParser() help_ = "Load h5 model trained weights" parser.add_argument("-w", "--weights", help=help_) help_ = "Number of training epochs" parser.add_argument("-e", "--epochs", help=help_, default=10 ,type=int) return parser.parse_args() if __name__ == '__main__': # parse arguments args = parse_args() if args is None: exit() x_train, y_train = create_dataset(128,128, nSlices=150, resize=0.75, directory='space/') # 3 channels = RGB assert(x_train.shape[0]>0) x_train /= 255 dcgan = DCGAN(img_rows = x_train[0].shape[0], img_cols = x_train[0].shape[1], channels = x_train[0].shape[2], latent_dim=32, name='nebula_32_128') dcgan.train(x_train, epochs=args.epochs, batch_size=32, save_interval=100)
help_ = "Number of training epochs" parser.add_argument("-e", "--epochs", help=help_, default=101, type=int) return parser.parse_args() if __name__ == '__main__': # parse arguments args = parse_args() if args is None: exit() x_train, y_train = create_dataset( 128, 128, nSlices=1000, resize=0.5, directory='Space/Galaxy/') # 3 channels = RGB assert (x_train.shape[0] > 0) x_train /= 255 # plot results to make sure data looks good! fig, axs = plt.subplots(4, 4) for i in range(4): for j in range(4): axs[i, j].imshow(x_train[np.random.randint(x_train.shape[0])]) axs[i, j].axis('off') plt.show() dcgan = DCGAN(img_rows=x_train[0].shape[0], img_cols=x_train[0].shape[1],