예제 #1
0
    def __init__(self):

        self.app = ConsoleApp()
        self.view = self.app.createView()
        self.robotSystem = robotsystem.create(self.view)

        jointGroups = getJointGroups()
        self.jointTeleopPanel = JointTeleopPanel(self.robotSystem, jointGroups)
        self.jointCommandPanel = JointCommandPanel(self.robotSystem)

        self.jointCommandPanel.ui.speedSpinBox.setEnabled(False)

        self.jointCommandPanel.ui.mirrorArmsCheck.setChecked(self.jointTeleopPanel.mirrorArms)
        self.jointCommandPanel.ui.mirrorLegsCheck.setChecked(self.jointTeleopPanel.mirrorLegs)
        self.jointCommandPanel.ui.resetButton.connect('clicked()', self.resetJointTeleopSliders)
        self.jointCommandPanel.ui.mirrorArmsCheck.connect('clicked()', self.mirrorJointsChanged)
        self.jointCommandPanel.ui.mirrorLegsCheck.connect('clicked()', self.mirrorJointsChanged)

        self.widget = QtGui.QWidget()

        gl = QtGui.QGridLayout(self.widget)
        gl.addWidget(self.app.showObjectModel(), 0, 0, 4, 1) # row, col, rowspan, colspan
        gl.addWidget(self.view, 0, 1, 1, 1)
        gl.addWidget(self.jointCommandPanel.widget, 1, 1, 1, 1)
        gl.addWidget(self.jointTeleopPanel.widget, 0, 2, -1, 1)
        gl.setRowStretch(0,1)
        gl.setColumnStretch(1,1)

        #self.sub = lcmUtils.addSubscriber('COMMITTED_ROBOT_PLAN', lcmdrc.robot_plan_t, self.onRobotPlan)
        lcmUtils.addSubscriber('STEERING_COMMAND_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal)
        lcmUtils.addSubscriber('THROTTLE_COMMAND_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal)
예제 #2
0
def main():
    app = ConsoleApp()
    camVis = CameraVisualizer()
    camVis.createUI()
    camVis.showUI()    
    
    app.start()
예제 #3
0
    def __init__(self,
                 percentObsDensity=20,
                 endTime=40,
                 nonRandomWorld=False,
                 circleRadius=0.7,
                 worldScale=1.0,
                 autoInitialize=True,
                 verbose=True):
        self.verbose = verbose
        self.startSimTime = time.time()
        self.collisionThreshold = 1.3
        self.randomSeed = 5
        self.Sensor_rayLength = 8

        self.percentObsDensity = percentObsDensity
        self.defaultControllerTime = 1000
        self.nonRandomWorld = nonRandomWorld
        self.circleRadius = circleRadius
        self.worldScale = worldScale

        # create the visualizer object
        self.app = ConsoleApp()
        self.view = self.app.createView(useGrid=False)

        self.initializeOptions()
        self.initializeColorMap()

        if autoInitialize:
            self.initialize()
예제 #4
0
def main():
    app = ConsoleApp()
    camVis = CameraVisualizer()
    camVis.createUI()
    camVis.showUI()

    app.start()
예제 #5
0
    def __init__(self):

        self.app = ConsoleApp()
        self.view = self.app.createView()
        self.robotModel, self.jointController = roboturdf.loadRobotModel('robot model', self.view)
        self.jointController.setZeroPose()
        self.view.show()
        self.sub = lcmUtils.addSubscriber('ATLAS_COMMAND', lcmdrc.atlas_command_t, self.onAtlasCommand)
        self.sub.setSpeedLimit(60)
예제 #6
0
def main():

    app = ConsoleApp()

    view = app.createView(useGrid=False)
    imageManager = cameraview.ImageManager()
    cameraView = cameraview.CameraView(imageManager, view)

    view.show()
    app.start()
예제 #7
0
def main():
    global app, view, nav_data

    nav_data = np.array([[0, 0, 0]])

    lcmUtils.addSubscriber(".*_NAV$", node_nav_t, handleNavData)

    app = ConsoleApp()

    app.setupGlobals(globals())
    app.showPythonConsole()

    view = app.createView()
    view.show()

    global d
    d = DebugData()
    d.addLine([0, 0, 0], [1, 0, 0], color=[0, 1, 0])
    d.addSphere((0, 0, 0), radius=0.02, color=[1, 0, 0])

    #vis.showPolyData(d.getPolyData(), 'my debug geometry', colorByName='RGB255')

    startSwarmVisualization()

    app.start()
예제 #8
0
def main():
    global app, view, nav_data

    nav_data = np.array([[0, 0, 0]])

    lcmUtils.addSubscriber(".*_NAV$", node_nav_t, handleNavData)

    app = ConsoleApp()

    app.setupGlobals(globals())
    app.showPythonConsole()

    view = app.createView()
    view.show()

    global d
    d = DebugData()
    d.addLine([0,0,0], [1,0,0], color=[0,1,0])
    d.addSphere((0,0,0), radius=0.02, color=[1,0,0])

    #vis.showPolyData(d.getPolyData(), 'my debug geometry', colorByName='RGB255')

    startSwarmVisualization()

    app.start()
예제 #9
0
    def __init__(self):
        self.sub = lcmUtils.addSubscriber('JOINT_POSITION_GOAL', lcmdrc.robot_state_t, self.onJointPositionGoal)
        self.sub = lcmUtils.addSubscriber('SINGLE_JOINT_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal)
        lcmUtils.addSubscriber('COMMITTED_PLAN_PAUSE', lcmdrc.plan_control_t, self.onPause)
        self.debug = False

        if self.debug:

            self.app = ConsoleApp()
            self.view = self.app.createView()
            self.robotModel, self.jointController = roboturdf.loadRobotModel('robot model', self.view)
            self.jointController.setPose('ATLAS_COMMAND', commandStream._currentCommandedPose)
            self.view.show()
            self.timer = TimerCallback(targetFps=30)
            self.timer.callback = self.onDebug
    def __init__(self, percentObsDensity=20, endTime=40, randomizeControl=False, nonRandomWorld=False,
                 circleRadius=0.7, worldScale=1.0, supervisedTrainingTime=500, autoInitialize=True, verbose=True,
                 sarsaType="discrete"):
        self.verbose = verbose
        self.randomizeControl = randomizeControl
        self.startSimTime = time.time()
        self.collisionThreshold = 1.3
        self.randomSeed = 5
        self.Sarsa_numInnerBins = 4
        self.Sarsa_numOuterBins = 4
        self.Sensor_rayLength = 8
        self.sarsaType = sarsaType

        self.percentObsDensity = percentObsDensity
        self.supervisedTrainingTime = 10
        self.learningRandomTime = 10
        self.learningEvalTime = 10
        self.defaultControllerTime = 10
        self.nonRandomWorld = nonRandomWorld
        self.circleRadius = circleRadius
        self.worldScale = worldScale
        # create the visualizer object
        self.app = ConsoleApp()
        # view = app.createView(useGrid=False)
        self.view = self.app.createView(useGrid=False)

        self.initializeOptions()
        self.initializeColorMap()
        if autoInitialize:
            self.initialize()
예제 #11
0
 def __init__(self):
     self.timer = TimerCallback(targetFps=10)
     #self.timer.disableScheduledTimer()
     self.app = ConsoleApp()
     self.robotModel, self.jointController = roboturdf.loadRobotModel(
         'robot model')
     self.fpsCounter = simpletimer.FPSCounter()
     self.drakePoseJointNames = robotstate.getDrakePoseJointNames()
     self.fpsCounter.printToConsole = True
     self.timer.callback = self._tick
     self._initialized = False
     self.publishChannel = 'JOINT_POSITION_GOAL'
     # self.lastCommandMessage = newAtlasCommandMessageAtZero()
     self._numPositions = len(robotstate.getDrakePoseJointNames())
     self._previousElapsedTime = 100
     self._baseFlag = 0
     self.jointLimitsMin = np.array([
         self.robotModel.model.getJointLimits(jointName)[0]
         for jointName in robotstate.getDrakePoseJointNames()
     ])
     self.jointLimitsMax = np.array([
         self.robotModel.model.getJointLimits(jointName)[1]
         for jointName in robotstate.getDrakePoseJointNames()
     ])
     self.useControllerFlag = False
     self.drivingGainsFlag = False
     self.applyDefaults()
예제 #12
0
    def __init__(self):

        self.app = ConsoleApp()
        self.view = self.app.createView()
        self.robotSystem = robotsystem.create(self.view)

        jointGroups = getJointGroups()
        self.jointTeleopPanel = JointTeleopPanel(self.robotSystem, jointGroups)
        self.jointCommandPanel = JointCommandPanel(self.robotSystem)

        self.jointCommandPanel.ui.speedSpinBox.setEnabled(False)

        self.jointCommandPanel.ui.mirrorArmsCheck.setChecked(self.jointTeleopPanel.mirrorArms)
        self.jointCommandPanel.ui.mirrorLegsCheck.setChecked(self.jointTeleopPanel.mirrorLegs)
        self.jointCommandPanel.ui.resetButton.connect('clicked()', self.resetJointTeleopSliders)
        self.jointCommandPanel.ui.mirrorArmsCheck.connect('clicked()', self.mirrorJointsChanged)
        self.jointCommandPanel.ui.mirrorLegsCheck.connect('clicked()', self.mirrorJointsChanged)

        self.widget = QtGui.QWidget()

        gl = QtGui.QGridLayout(self.widget)
        gl.addWidget(self.app.showObjectModel(), 0, 0, 4, 1) # row, col, rowspan, colspan
        gl.addWidget(self.view, 0, 1, 1, 1)
        gl.addWidget(self.jointCommandPanel.widget, 1, 1, 1, 1)
        gl.addWidget(self.jointTeleopPanel.widget, 0, 2, -1, 1)
        gl.setRowStretch(0,1)
        gl.setColumnStretch(1,1)

        #self.sub = lcmUtils.addSubscriber('COMMITTED_ROBOT_PLAN', lcmdrc.robot_plan_t, self.onRobotPlan)
        lcmUtils.addSubscriber('STEERING_COMMAND_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal)
        lcmUtils.addSubscriber('THROTTLE_COMMAND_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal)
예제 #13
0
    def setDefaultOptions(self):
        defaultOptions = dict()
        defaultOptions['Sensor'] = dict()
        defaultOptions['Sensor']['rayLength'] = 20
        defaultOptions['Sensor']['numRays'] = 100
        defaultOptions['Sensor']['FOV'] = 270

        defaultOptions['Sim'] = dict()
        defaultOptions['Sim']['dt'] = 0.05
        defaultOptions['Sim']['usePursuitController'] = True

        defaultOptions['featureDetector'] = {}
        defaultOptions['featureDetector']['detectCorners'] = True
        self.options = defaultOptions

        self.app = ConsoleApp()
        self.view = self.app.createView(useGrid=False)
예제 #14
0
    def __init__(self):

        self.app = ConsoleApp()
        self.view = self.app.createView()
        self.robotModel, self.jointController = roboturdf.loadRobotModel('robot model', self.view)
        self.jointController.setZeroPose()
        self.view.show()
        self.sub = lcmUtils.addSubscriber('ATLAS_COMMAND', lcmdrc.atlas_command_t, self.onAtlasCommand)
        self.sub.setSpeedLimit(60)
예제 #15
0
def robotMain(useDrivingGains=False, useController=True):

    print 'waiting for robot state...'
    commandStream.waitForRobotState()
    print 'starting.'
    commandStream.timer.targetFps = 1000

    if useController==True:
        commandStream.useController()
    else:
        commandStream.publishChannel = 'ATLAS_COMMAND'

    if useDrivingGains:
        commandStream.applyDrivingDefaults()

    commandStream.startStreaming()
    positionListener = PositionGoalListener()
    planListener = CommittedRobotPlanListener()
    ConsoleApp.start()
예제 #16
0
def robotMain(useDrivingGains=False, useController=True):

    print 'waiting for robot state...'
    commandStream.waitForRobotState()
    print 'starting.'
    commandStream.timer.targetFps = 1000

    if useController == True:
        commandStream.useController()
    else:
        commandStream.publishChannel = 'ATLAS_COMMAND'

    if useDrivingGains:
        commandStream.applyDrivingDefaults()

    commandStream.startStreaming()
    positionListener = PositionGoalListener()
    planListener = CommittedRobotPlanListener()
    ConsoleApp.start()
예제 #17
0
class PositionGoalListener(object):
    def __init__(self):
        self.sub = lcmUtils.addSubscriber('JOINT_POSITION_GOAL',
                                          lcmdrc.robot_state_t,
                                          self.onJointPositionGoal)
        self.sub = lcmUtils.addSubscriber('SINGLE_JOINT_POSITION_GOAL',
                                          lcmdrc.joint_position_goal_t,
                                          self.onSingleJointPositionGoal)
        lcmUtils.addSubscriber('COMMITTED_PLAN_PAUSE', lcmdrc.plan_control_t,
                               self.onPause)
        self.debug = False

        if self.debug:

            self.app = ConsoleApp()
            self.view = self.app.createView()
            self.robotModel, self.jointController = roboturdf.loadRobotModel(
                'robot model', self.view)
            self.jointController.setPose('ATLAS_COMMAND',
                                         commandStream._currentCommandedPose)
            self.view.show()
            self.timer = TimerCallback(targetFps=30)
            self.timer.callback = self.onDebug

    def onPause(self, msg):
        commandStream.stopStreaming()

    def onJointPositionGoal(self, msg):
        #lcmUtils.publish('ATLAS_COMMAND', msg)

        commandStream.startStreaming()
        pose = robotstate.convertStateMessageToDrakePose(msg)
        self.setGoalPose(pose)

    def setGoalPose(self, pose):
        commandStream.setGoalPose(pose)

    def onDebug(self):
        self.jointController.setPose('ATLAS_COMMAND',
                                     commandStream._currentCommandedPose)

    def onSingleJointPositionGoal(self, msg):
        jointPositionGoal = msg.joint_position
        jointName = msg.joint_name
        allowedJointNames = ['l_leg_aky', 'l_arm_lwy']

        if not (jointName in allowedJointNames):
            print 'Position goals are not allowed for this joint'
            print 'ignoring this position goal'
            print 'use the sliders instead'
            return

        commandStream.setIndividualJointGoalPose(jointPositionGoal, jointName)
    def __init__(self,
                 percentObsDensity=20,
                 endTime=40,
                 randomizeControl=False,
                 nonRandomWorld=False,
                 circleRadius=0.7,
                 worldScale=1.0,
                 supervisedTrainingTime=500,
                 autoInitialize=True,
                 verbose=True,
                 sarsaType="discrete"):
        self.verbose = verbose
        self.randomizeControl = randomizeControl
        self.startSimTime = time.time()
        self.collisionThreshold = 1.3
        self.randomSeed = 5
        self.Sarsa_numInnerBins = 4
        self.Sarsa_numOuterBins = 4
        self.Sensor_rayLength = 8
        self.sarsaType = sarsaType

        self.percentObsDensity = percentObsDensity
        self.supervisedTrainingTime = 10
        self.learningRandomTime = 10
        self.learningEvalTime = 10
        self.defaultControllerTime = 10
        self.nonRandomWorld = nonRandomWorld
        self.circleRadius = circleRadius
        self.worldScale = worldScale
        # create the visualizer object
        self.app = ConsoleApp()
        # view = app.createView(useGrid=False)
        self.view = self.app.createView(useGrid=False)

        self.initializeOptions()
        self.initializeColorMap()
        if autoInitialize:
            self.initialize()
예제 #19
0
def main():

    app = ConsoleApp()

    view = app.createView(useGrid=False)
    view.orientationMarkerWidget().Off()
    view.backgroundRenderer().SetBackground([0,0,0])
    view.backgroundRenderer().SetBackground2([0,0,0])


    cameraChannel = parseChannelArgument()
    imageManager = cameraview.ImageManager()
    imageManager.queue.addCameraStream(cameraChannel)
    imageManager.addImage(cameraChannel)


    cameraView = cameraview.CameraImageView(imageManager, cameraChannel, view=view)
    cameraView.eventFilterEnabled = False
    view.renderWindow().GetInteractor().SetInteractorStyle(vtk.vtkInteractorStyleImage())


    view.show()
    app.start()
예제 #20
0
def main():

    app = ConsoleApp()

    view = app.createView(useGrid=False)
    view.orientationMarkerWidget().Off()
    view.backgroundRenderer().SetBackground([0, 0, 0])
    view.backgroundRenderer().SetBackground2([0, 0, 0])

    cameraChannel = parseChannelArgument()
    imageManager = cameraview.ImageManager()
    imageManager.queue.addCameraStream(cameraChannel)
    imageManager.addImage(cameraChannel)

    cameraView = cameraview.CameraImageView(imageManager,
                                            cameraChannel,
                                            view=view)
    cameraView.eventFilterEnabled = False
    view.renderWindow().GetInteractor().SetInteractorStyle(
        vtk.vtkInteractorStyleImage())

    view.show()
    app.start()
예제 #21
0
    def __init__(self):
        self.sub = lcmUtils.addSubscriber('JOINT_POSITION_GOAL', lcmdrc.robot_state_t, self.onJointPositionGoal)
        self.sub = lcmUtils.addSubscriber('SINGLE_JOINT_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal)
        lcmUtils.addSubscriber('COMMITTED_PLAN_PAUSE', lcmdrc.plan_control_t, self.onPause)
        self.debug = False

        if self.debug:

            self.app = ConsoleApp()
            self.view = self.app.createView()
            self.robotModel, self.jointController = roboturdf.loadRobotModel('robot model', self.view)
            self.jointController.setPose('ATLAS_COMMAND', commandStream._currentCommandedPose)
            self.view.show()
            self.timer = TimerCallback(targetFps=30)
            self.timer.callback = self.onDebug
예제 #22
0
class DebugAtlasCommandListener(object):

    def __init__(self):

        self.app = ConsoleApp()
        self.view = self.app.createView()
        self.robotModel, self.jointController = roboturdf.loadRobotModel('robot model', self.view)
        self.jointController.setZeroPose()
        self.view.show()
        self.sub = lcmUtils.addSubscriber('ATLAS_COMMAND', lcmdrc.atlas_command_t, self.onAtlasCommand)
        self.sub.setSpeedLimit(60)

    def onAtlasCommand(self, msg):
        pose = atlasCommandToDrakePose(msg)
        self.jointController.setPose('ATLAS_COMMAND', pose)
예제 #23
0
class DebugAtlasCommandListener(object):

    def __init__(self):

        self.app = ConsoleApp()
        self.view = self.app.createView()
        self.robotModel, self.jointController = roboturdf.loadRobotModel('robot model', self.view)
        self.jointController.setZeroPose()
        self.view.show()
        self.sub = lcmUtils.addSubscriber('ATLAS_COMMAND', lcmdrc.atlas_command_t, self.onAtlasCommand)
        self.sub.setSpeedLimit(60)

    def onAtlasCommand(self, msg):
        pose = atlasCommandToDrakePose(msg)
        self.jointController.setPose('ATLAS_COMMAND', pose)
예제 #24
0
class PositionGoalListener(object):

    def __init__(self):
        self.sub = lcmUtils.addSubscriber('JOINT_POSITION_GOAL', lcmdrc.robot_state_t, self.onJointPositionGoal)
        self.sub = lcmUtils.addSubscriber('SINGLE_JOINT_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal)
        lcmUtils.addSubscriber('COMMITTED_PLAN_PAUSE', lcmdrc.plan_control_t, self.onPause)
        self.debug = False

        if self.debug:

            self.app = ConsoleApp()
            self.view = self.app.createView()
            self.robotModel, self.jointController = roboturdf.loadRobotModel('robot model', self.view)
            self.jointController.setPose('ATLAS_COMMAND', commandStream._currentCommandedPose)
            self.view.show()
            self.timer = TimerCallback(targetFps=30)
            self.timer.callback = self.onDebug


    def onPause(self, msg):
        commandStream.stopStreaming()

    def onJointPositionGoal(self, msg):
        #lcmUtils.publish('ATLAS_COMMAND', msg)

        commandStream.startStreaming()
        pose = robotstate.convertStateMessageToDrakePose(msg)
        self.setGoalPose(pose)

    def setGoalPose(self, pose):
        commandStream.setGoalPose(pose)

    def onDebug(self):
        self.jointController.setPose('ATLAS_COMMAND', commandStream._currentCommandedPose)

    def onSingleJointPositionGoal(self, msg):
        jointPositionGoal = msg.joint_position
        jointName = msg.joint_name
        allowedJointNames = ['l_leg_aky','l_arm_lwy']

        if not (jointName in allowedJointNames):
            print 'Position goals are not allowed for this joint'
            print 'ignoring this position goal'
            print 'use the sliders instead'
            return
            
        commandStream.setIndividualJointGoalPose(jointPositionGoal, jointName)
예제 #25
0
            # d.addSphere(intersection, radius=0.04)
            vis.updatePolyData(d.getPolyData(), name, color=color)


#########################
numRays = 20
angleMin = -np.pi/2
angleMax = np.pi/2
angleGrid = np.linspace(angleMin, angleMax, numRays)
rays = np.zeros((3,numRays))
rays[0,:] = np.cos(angleGrid)
rays[1,:] = np.sin(angleGrid)



app = ConsoleApp()
view = app.createView()

world = buildWorld()
robot = buildRobot()
locator = buildCellLocator(world.polyData)

frame = robot.getChildFrame()
frame.setProperty('Edit', True)
frame.widget.HandleRotationEnabledOff()
rep = frame.widget.GetRepresentation()
rep.SetTranslateAxisEnabled(2, False)
rep.SetRotateAxisEnabled(0, False)
rep.SetRotateAxisEnabled(1, False)

frame.connectFrameModified(updateIntersection)
예제 #26
0
class AtlasCommandPanel(object):
    def __init__(self):

        self.app = ConsoleApp()
        self.view = self.app.createView()
        self.robotSystem = robotsystem.create(self.view)

        jointGroups = getJointGroups()
        self.jointTeleopPanel = JointTeleopPanel(self.robotSystem, jointGroups)
        self.jointCommandPanel = JointCommandPanel(self.robotSystem)

        self.jointCommandPanel.ui.speedSpinBox.setEnabled(False)

        self.jointCommandPanel.ui.mirrorArmsCheck.setChecked(
            self.jointTeleopPanel.mirrorArms)
        self.jointCommandPanel.ui.mirrorLegsCheck.setChecked(
            self.jointTeleopPanel.mirrorLegs)
        self.jointCommandPanel.ui.resetButton.connect(
            'clicked()', self.resetJointTeleopSliders)
        self.jointCommandPanel.ui.mirrorArmsCheck.connect(
            'clicked()', self.mirrorJointsChanged)
        self.jointCommandPanel.ui.mirrorLegsCheck.connect(
            'clicked()', self.mirrorJointsChanged)

        self.widget = QtGui.QWidget()

        gl = QtGui.QGridLayout(self.widget)
        gl.addWidget(self.app.showObjectModel(), 0, 0, 4,
                     1)  # row, col, rowspan, colspan
        gl.addWidget(self.view, 0, 1, 1, 1)
        gl.addWidget(self.jointCommandPanel.widget, 1, 1, 1, 1)
        gl.addWidget(self.jointTeleopPanel.widget, 0, 2, -1, 1)
        gl.setRowStretch(0, 1)
        gl.setColumnStretch(1, 1)

        #self.sub = lcmUtils.addSubscriber('COMMITTED_ROBOT_PLAN', lcmdrc.robot_plan_t, self.onRobotPlan)
        lcmUtils.addSubscriber('STEERING_COMMAND_POSITION_GOAL',
                               lcmdrc.joint_position_goal_t,
                               self.onSingleJointPositionGoal)
        lcmUtils.addSubscriber('THROTTLE_COMMAND_POSITION_GOAL',
                               lcmdrc.joint_position_goal_t,
                               self.onSingleJointPositionGoal)

    def onSingleJointPositionGoal(self, msg):
        jointPositionGoal = msg.joint_position
        jointName = msg.joint_name
        allowedJointNames = ['l_leg_aky', 'l_arm_lwy']

        if not (jointName in allowedJointNames):
            print 'Position goals are not allowed for this joint'
            print 'ignoring this position goal'
            print 'use the sliders instead'
            return

        if (jointName == 'l_arm_lwy') and (
                not self.jointCommandPanel.steeringControlEnabled):
            print 'Steering control not enabled'
            print 'ignoring steering command'
            return

        if (jointName == 'l_leg_aky') and (
                not self.jointCommandPanel.throttleControlEnabled):
            print 'Throttle control not enabled'
            print 'ignoring throttle command'
            return

        jointIdx = self.jointTeleopPanel.toJointIndex(joint_name)
        self.jointTeleopPanel.endPose[jointIdx] = jointPositionGoal
        self.jointTeleopPanel.updateSliders()
        self.jointTeleopPanel.sliderChanged(jointName)

    def onRobotPlan(self, msg):
        playback = planplayback.PlanPlayback()
        playback.interpolationMethod = 'pchip'
        poseTimes, poses = playback.getPlanPoses(msg)
        f = playback.getPoseInterpolator(poseTimes, poses)

        jointController = self.robotSystem.teleopJointController

        timer = simpletimer.SimpleTimer()

        def setPose(pose):
            jointController.setPose('plan_playback', pose)
            self.jointTeleopPanel.endPose = pose
            self.jointTeleopPanel.updateSliders()
            commandStream.setGoalPose(pose)

        def updateAnimation():

            tNow = timer.elapsed()

            if tNow > poseTimes[-1]:
                pose = poses[-1]
                setPose(pose)
                return False

            pose = f(tNow)
            setPose(pose)

        self.animationTimer = TimerCallback()
        self.animationTimer.targetFps = 60
        self.animationTimer.callback = updateAnimation
        self.animationTimer.start()

    def mirrorJointsChanged(self):
        self.jointTeleopPanel.mirrorLegs = self.jointCommandPanel.ui.mirrorLegsCheck.checked
        self.jointTeleopPanel.mirrorArms = self.jointCommandPanel.ui.mirrorArmsCheck.checked

    def resetJointTeleopSliders(self):
        self.jointTeleopPanel.resetPoseToRobotState()
예제 #27
0
def debugMain():

    listener = DebugAtlasCommandListener()
    ConsoleApp.start()
예제 #28
0
def main():

    atlasdriver.init()
    panel = atlasdriverpanel.AtlasDriverPanel(atlasdriver.driver)
    panel.widget.show()
    ConsoleApp.start()
예제 #29
0
class AtlasCommandPanel(object):

    def __init__(self):

        self.app = ConsoleApp()
        self.view = self.app.createView()
        self.robotSystem = robotsystem.create(self.view)

        jointGroups = getJointGroups()
        self.jointTeleopPanel = JointTeleopPanel(self.robotSystem, jointGroups)
        self.jointCommandPanel = JointCommandPanel(self.robotSystem)

        self.jointCommandPanel.ui.speedSpinBox.setEnabled(False)

        self.jointCommandPanel.ui.mirrorArmsCheck.setChecked(self.jointTeleopPanel.mirrorArms)
        self.jointCommandPanel.ui.mirrorLegsCheck.setChecked(self.jointTeleopPanel.mirrorLegs)
        self.jointCommandPanel.ui.resetButton.connect('clicked()', self.resetJointTeleopSliders)
        self.jointCommandPanel.ui.mirrorArmsCheck.connect('clicked()', self.mirrorJointsChanged)
        self.jointCommandPanel.ui.mirrorLegsCheck.connect('clicked()', self.mirrorJointsChanged)

        self.widget = QtGui.QWidget()

        gl = QtGui.QGridLayout(self.widget)
        gl.addWidget(self.app.showObjectModel(), 0, 0, 4, 1) # row, col, rowspan, colspan
        gl.addWidget(self.view, 0, 1, 1, 1)
        gl.addWidget(self.jointCommandPanel.widget, 1, 1, 1, 1)
        gl.addWidget(self.jointTeleopPanel.widget, 0, 2, -1, 1)
        gl.setRowStretch(0,1)
        gl.setColumnStretch(1,1)

        #self.sub = lcmUtils.addSubscriber('COMMITTED_ROBOT_PLAN', lcmdrc.robot_plan_t, self.onRobotPlan)
        lcmUtils.addSubscriber('STEERING_COMMAND_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal)
        lcmUtils.addSubscriber('THROTTLE_COMMAND_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal)


    def onSingleJointPositionGoal(self, msg):
        jointPositionGoal = msg.joint_position
        jointName = msg.joint_name
        allowedJointNames = ['l_leg_aky','l_arm_lwy']

        if not (jointName in allowedJointNames):
            print 'Position goals are not allowed for this joint'
            print 'ignoring this position goal'
            print 'use the sliders instead'
            return

        if (jointName == 'l_arm_lwy') and (not self.jointCommandPanel.steeringControlEnabled):
            print 'Steering control not enabled'
            print 'ignoring steering command'
            return

        if (jointName == 'l_leg_aky') and (not self.jointCommandPanel.throttleControlEnabled):
            print 'Throttle control not enabled'
            print 'ignoring throttle command'
            return
            
        jointIdx = self.jointTeleopPanel.toJointIndex(joint_name)
        self.jointTeleopPanel.endPose[jointIdx] = jointPositionGoal
        self.jointTeleopPanel.updateSliders()
        self.jointTeleopPanel.sliderChanged(jointName)

            
    def onRobotPlan(self, msg):
        playback = planplayback.PlanPlayback()
        playback.interpolationMethod = 'pchip'
        poseTimes, poses = playback.getPlanPoses(msg)
        f = playback.getPoseInterpolator(poseTimes, poses)

        jointController = self.robotSystem.teleopJointController

        timer = simpletimer.SimpleTimer()

        def setPose(pose):
            jointController.setPose('plan_playback', pose)
            self.jointTeleopPanel.endPose = pose
            self.jointTeleopPanel.updateSliders()
            commandStream.setGoalPose(pose)

        def updateAnimation():

            tNow = timer.elapsed()

            if tNow > poseTimes[-1]:
                pose = poses[-1]
                setPose(pose)
                return False

            pose = f(tNow)
            setPose(pose)


        self.animationTimer = TimerCallback()
        self.animationTimer.targetFps = 60
        self.animationTimer.callback = updateAnimation
        self.animationTimer.start()


    def mirrorJointsChanged(self):
        self.jointTeleopPanel.mirrorLegs = self.jointCommandPanel.ui.mirrorLegsCheck.checked
        self.jointTeleopPanel.mirrorArms = self.jointCommandPanel.ui.mirrorArmsCheck.checked

    def resetJointTeleopSliders(self):
        self.jointTeleopPanel.resetPoseToRobotState()
예제 #30
0
def debugMain():

    listener = DebugAtlasCommandListener()
    ConsoleApp.start()
예제 #31
0
class SimpleSimulator(object):

    def __init__(self):
        self.setDefaultOptions()
        self.initialize()

    def setDefaultOptions(self):
        defaultOptions = dict()
        defaultOptions['Sensor'] = dict()
        defaultOptions['Sensor']['rayLength'] = 20
        defaultOptions['Sensor']['numRays'] = 100
        defaultOptions['Sensor']['FOV'] = 270

        defaultOptions['Sim'] = dict()
        defaultOptions['Sim']['dt'] = 0.05
        defaultOptions['Sim']['usePursuitController'] = True

        defaultOptions['featureDetector'] = {}
        defaultOptions['featureDetector']['detectCorners'] = True
        self.options = defaultOptions

        self.app = ConsoleApp()
        self.view = self.app.createView(useGrid=False)

    def initialize(self):
        self.car = DubinsCar()

        self.sensor = SensorObj(rayLength=self.options['Sensor']['rayLength'],
                                numRays=self.options['Sensor']['numRays'],
                                FOV=self.options['Sensor']['FOV'])


        self.controller = DubinsPIDController(self.sensor, self.car)
        self.world = World.buildDonutWorld()
        self.locator = World.buildCellLocator(self.world.visObj.polyData)
        self.sensor.setLocator(self.locator)
        self.robot, self.carFrame = World.buildRobot()
        self.car.setFrame(self.carFrame)
        self.locator = World.buildCellLocator(self.world.visObj.polyData)
        self.wallDetector = WallDetector(self.sensor)
        self.planner = SimplePlanner(self.sensor)
        self.pursuitController = PurePursuitController(self.car, self.sensor)
        self.featureDetector = FeatureDetector(self.sensor)

    def updateDrawIntersection(self, frame):

        origin = np.array(frame.transform.GetPosition())
        #print "origin is now at", origin
        d = DebugData()

        colorMaxRange = [0,1,0]

        for i in xrange(self.sensor.numRays):
            ray = self.sensor.rays[:,i]
            rayTransformed = np.array(frame.transform.TransformNormal(ray))
            #print "rayTransformed is", rayTransformed
            intersection = self.sensor.raycast(self.locator, origin, origin + rayTransformed*self.sensor.rayLength)

            if intersection is not None:
                d.addLine(origin, intersection, color=[1,0,0])
            else:
                d.addLine(origin, origin+rayTransformed*self.sensor.rayLength, color=colorMaxRange)

        vis.updatePolyData(d.getPolyData(), 'rays', colorByName='RGB255')


    def playTimerCallback(self):
        self.simulateOneStep(self.options['Sim']['dt'])

    def simulateOneStep(self, dt):


        verbose = True
        raycastData = self.sensor.raycastAllFromCurrentFrameLocation()

        if self.options['Sim']['usePursuitController']:
            L_fw, theta = self.planner.computePursuitPoint(raycastData, plot=True)
            carState = self.car.state
            controlInput = self.pursuitController.computeControlInput(carState, dt, L_fw, theta)

        if self.options['featureDetector']['detectCorners']:
            self.featureDetector.detectCorner(raycastData, plot=True, verbose=True)

        newState = self.car.simulateOneStep(controlInput, dt=dt)
        self.car.setFrameToState()

    def onPlayButton(self):

        if self.playTimer.isActive():
            self.playTimer.stop()
            return

        self.car.resetStateToFrameLocation()
        self.playTimer.start()

    def launchViewer(self):

        playButtonFps = 1.0/self.options['Sim']['dt']

        print "playButtonFPS", playButtonFps
        self.playTimer = TimerCallback(targetFps=playButtonFps)
        self.playTimer.callback = self.playTimerCallback

        panel = QtGui.QWidget()
        l = QtGui.QHBoxLayout(panel)

        playButton = QtGui.QPushButton('Play/Pause')
        playButton.connect('clicked()', self.onPlayButton)

        l.addWidget(playButton)

        w = QtGui.QWidget()
        l = QtGui.QVBoxLayout(w)
        l.addWidget(self.view)
        l.addWidget(panel)
        w.showMaximized()


        self.carFrame.connectFrameModified(self.updateDrawIntersection)
        self.updateDrawIntersection(self.carFrame)

        applogic.resetCamera(viewDirection=[0.2,0,-1])
        self.view.showMaximized()
        self.view.raise_()

        self.app.start()

    def testCrossTrackError(self):
        carState = np.copy(self.car.state)
        carState[self.car.idx['v']] = 5.0
        raycastData = self.sensor.raycastAllFromCurrentFrameLocation()
        wallsFound = self.wallDetector.findWalls(raycastData, addNoise=False)

        return self.controller.computeCrossTrackError(carState, wallsFound, verbose=True)

    def testPursuitController(self):
        L_fw, theta = self.planner.testFromCurrent()
        self.car.resetStateToFrameLocation()
        v_des = 5.0
        carState = self.car.state
        dt = 0.05
        u = self.pursuitController.computeControlInput(carState, dt, L_fw, theta, v_des, verbose=True)

    def testDetectFeature(self):
        raycastData = self.sensor.raycastAllFromCurrentFrameLocation()
        self.featureDetector.detectCorner(raycastData, plot=True, verbose=True)
예제 #32
0
class Simulator(object):
    def __init__(self,
                 percentObsDensity=20,
                 endTime=40,
                 nonRandomWorld=False,
                 circleRadius=0.7,
                 worldScale=1.0,
                 autoInitialize=True,
                 verbose=True):
        self.verbose = verbose
        self.startSimTime = time.time()
        self.collisionThreshold = 1.3
        self.randomSeed = 5
        self.Sensor_rayLength = 8

        self.percentObsDensity = percentObsDensity
        self.defaultControllerTime = 1000
        self.nonRandomWorld = nonRandomWorld
        self.circleRadius = circleRadius
        self.worldScale = worldScale

        # create the visualizer object
        self.app = ConsoleApp()
        self.view = self.app.createView(useGrid=False)

        self.initializeOptions()
        self.initializeColorMap()

        if autoInitialize:
            self.initialize()

    def initializeOptions(self):
        self.options = dict()

        self.options['World'] = dict()
        self.options['World']['obstaclesInnerFraction'] = 0.85
        self.options['World']['randomSeed'] = 40
        self.options['World']['percentObsDensity'] = 7.5
        self.options['World']['nonRandomWorld'] = True
        self.options['World']['circleRadius'] = 1.0
        self.options['World']['scale'] = 1.0

        self.options['Sensor'] = dict()
        self.options['Sensor']['rayLength'] = 10
        self.options['Sensor']['numRays'] = 20

        self.options['Quad'] = dict()
        self.options['Quad']['velocity'] = 18

        self.options['dt'] = 0.05

        self.options['runTime'] = dict()
        self.options['runTime']['defaultControllerTime'] = 10

    def setDefaultOptions(self):

        defaultOptions = dict()

        defaultOptions['World'] = dict()
        defaultOptions['World']['obstaclesInnerFraction'] = 0.85
        defaultOptions['World']['randomSeed'] = 40
        defaultOptions['World']['percentObsDensity'] = 7.5
        defaultOptions['World']['nonRandomWorld'] = True
        defaultOptions['World']['circleRadius'] = 1.75
        defaultOptions['World']['scale'] = 1.0

        defaultOptions['Sensor'] = dict()
        defaultOptions['Sensor']['rayLength'] = 10
        defaultOptions['Sensor']['numRays'] = 20

        defaultOptions['Quad'] = dict()
        defaultOptions['Quad']['velocity'] = 18

        defaultOptions['dt'] = 0.05

        defaultOptions['runTime'] = dict()
        defaultOptions['runTime']['defaultControllerTime'] = 10

        for k in defaultOptions:
            self.options.setdefault(k, defaultOptions[k])

        for k in defaultOptions:
            if not isinstance(defaultOptions[k], dict):
                continue

            for j in defaultOptions[k]:
                self.options[k].setdefault(j, defaultOptions[k][j])

    def initializeColorMap(self):
        self.colorMap = dict()
        self.colorMap['default'] = [0, 1, 0]

    def initialize(self):

        self.dt = self.options['dt']
        self.controllerTypeOrder = ['default']

        self.setDefaultOptions()

        self.Sensor = SensorObj(rayLength=self.options['Sensor']['rayLength'],
                                numRays=self.options['Sensor']['numRays'])

        self.Controller = ControllerObj(self.Sensor)

        self.Quad = QuadPlant(controller=self.Controller,
                              velocity=self.options['Quad']['velocity'])

        # create the things needed for simulation
        om.removeFromObjectModel(om.findObjectByName('world'))
        self.world = World.buildWarehouseWorld(
            percentObsDensity=self.options['World']['percentObsDensity'],
            circleRadius=self.options['World']['circleRadius'],
            nonRandom=self.options['World']['nonRandomWorld'],
            scale=self.options['World']['scale'],
            randomSeed=self.options['World']['randomSeed'],
            obstaclesInnerFraction=self.options['World']
            ['obstaclesInnerFraction'])

        om.removeFromObjectModel(om.findObjectByName('robot'))
        self.robot, self.frame = World.buildRobot()
        self.locator = World.buildCellLocator(self.world.visObj.polyData)
        self.Sensor.setLocator(self.locator)
        self.frame = self.robot.getChildFrame()
        self.frame.setProperty('Scale', 3)
        self.frame.setProperty('Edit', True)
        self.frame.widget.HandleRotationEnabledOff()
        rep = self.frame.widget.GetRepresentation()
        rep.SetTranslateAxisEnabled(2, False)
        rep.SetRotateAxisEnabled(0, False)
        rep.SetRotateAxisEnabled(1, False)

        self.defaultControllerTime = self.options['runTime'][
            'defaultControllerTime']

        self.Quad.setFrame(self.frame)
        print "Finished initialization"

    def runSingleSimulation(self,
                            controllerType='default',
                            simulationCutoff=None):

        self.setCollisionFreeInitialState()

        currentQuadState = np.copy(self.Quad.state)
        nextQuadState = np.copy(self.Quad.state)
        self.setRobotFrameState(currentQuadState[0], currentQuadState[1],
                                currentQuadState[2])
        currentRaycast = self.Sensor.raycastAll(self.frame)
        nextRaycast = np.zeros(self.Sensor.numRays)

        # record the reward data
        runData = dict()
        startIdx = self.counter

        while (self.counter < self.numTimesteps - 1):
            idx = self.counter
            currentTime = self.t[idx]
            self.stateOverTime[idx, :] = currentQuadState
            x = self.stateOverTime[idx, 0]
            y = self.stateOverTime[idx, 1]
            theta = self.stateOverTime[idx, 2]
            self.setRobotFrameState(x, y, theta)
            # self.setRobotState(currentQuadState[0], currentQuadState[1], currentQuadState[2])
            currentRaycast = self.Sensor.raycastAll(self.frame)
            self.raycastData[idx, :] = currentRaycast
            S_current = (currentQuadState, currentRaycast)

            if controllerType not in self.colorMap.keys():
                print
                raise ValueError("controller of type " + controllerType +
                                 " not supported")

            if controllerType in ["default", "defaultRandom"]:
                controlInput, controlInputIdx = self.Controller.computeControlInput(
                    currentQuadState,
                    currentTime,
                    self.frame,
                    raycastDistance=currentRaycast,
                    randomize=False)

            self.controlInputData[idx] = controlInput

            nextQuadState = self.Quad.simulateOneStep(
                controlInput=controlInput, dt=self.dt)

            # want to compute nextRaycast so we can do the SARSA algorithm
            x = nextQuadState[0]
            y = nextQuadState[1]
            theta = nextQuadState[2]
            self.setRobotFrameState(x, y, theta)
            nextRaycast = self.Sensor.raycastAll(self.frame)

            # Compute the next control input
            S_next = (nextQuadState, nextRaycast)

            if controllerType in ["default", "defaultRandom"]:
                nextControlInput, nextControlInputIdx = self.Controller.computeControlInput(
                    nextQuadState,
                    currentTime,
                    self.frame,
                    raycastDistance=nextRaycast,
                    randomize=False)

            #bookkeeping
            currentQuadState = nextQuadState
            currentRaycast = nextRaycast
            self.counter += 1

            # break if we are in collision
            if self.checkInCollision(nextRaycast):
                if self.verbose:
                    print "Had a collision, terminating simulation"
                break

            if self.counter >= simulationCutoff:
                break

        # fill in the last state by hand
        self.stateOverTime[self.counter, :] = currentQuadState
        self.raycastData[self.counter, :] = currentRaycast

        # this just makes sure we don't get stuck in an infinite loop.
        if startIdx == self.counter:
            self.counter += 1

        return runData

    def setNumpyRandomSeed(self, seed=1):
        np.random.seed(seed)

    def runBatchSimulation(self, endTime=None, dt=0.05):

        # for use in playback
        self.dt = self.options['dt']

        self.endTime = self.defaultControllerTime  # used to be the sum of the other times as well

        self.t = np.arange(0.0, self.endTime, dt)
        maxNumTimesteps = np.size(self.t)
        self.stateOverTime = np.zeros((maxNumTimesteps + 1, 3))
        self.raycastData = np.zeros((maxNumTimesteps + 1, self.Sensor.numRays))
        self.controlInputData = np.zeros(maxNumTimesteps + 1)
        self.numTimesteps = maxNumTimesteps

        self.controllerTypeOrder = ['default']
        self.counter = 0
        self.simulationData = []

        self.initializeStatusBar()

        self.idxDict = dict()
        numRunsCounter = 0

        self.idxDict['default'] = self.counter
        loopStartIdx = self.counter
        simCutoff = min(loopStartIdx + self.defaultControllerTime / dt,
                        self.numTimesteps)

        while ((self.counter - loopStartIdx < self.defaultControllerTime / dt)
               and self.counter < self.numTimesteps - 1):
            self.printStatusBar()
            startIdx = self.counter
            runData = self.runSingleSimulation(controllerType='default',
                                               simulationCutoff=simCutoff)
            runData['startIdx'] = startIdx
            runData['controllerType'] = "default"
            runData['duration'] = self.counter - runData['startIdx']
            runData['endIdx'] = self.counter
            runData['runNumber'] = numRunsCounter
            numRunsCounter += 1
            self.simulationData.append(runData)

        # BOOKKEEPING
        # truncate stateOverTime, raycastData, controlInputs to be the correct size
        self.numTimesteps = self.counter + 1
        self.stateOverTime = self.stateOverTime[0:self.counter + 1, :]
        self.raycastData = self.raycastData[0:self.counter + 1, :]
        self.controlInputData = self.controlInputData[0:self.counter + 1]
        self.endTime = 1.0 * self.counter / self.numTimesteps * self.endTime

    def initializeStatusBar(self):
        self.numTicks = 10
        self.nextTickComplete = 1.0 / float(self.numTicks)
        self.nextTickIdx = 1
        print "Simulation percentage complete: (", self.numTicks, " # is complete)"

    def printStatusBar(self):
        fractionDone = float(self.counter) / float(self.numTimesteps)
        if fractionDone > self.nextTickComplete:

            self.nextTickIdx += 1
            self.nextTickComplete += 1.0 / self.numTicks

            timeSoFar = time.time() - self.startSimTime
            estimatedTimeLeft_sec = (1 -
                                     fractionDone) * timeSoFar / fractionDone
            estimatedTimeLeft_minutes = estimatedTimeLeft_sec / 60.0

            print "#" * self.nextTickIdx, "-" * (
                self.numTicks - self.nextTickIdx
            ), "estimated", estimatedTimeLeft_minutes, "minutes left"

    def setCollisionFreeInitialState(self):
        tol = 5

        while True:

            x = 0.0
            y = -5.0
            theta = 0  #+ np.random.uniform(0,2*np.pi,1)[0] * 0.01

            self.Quad.setQuadState(x, y, theta)
            self.setRobotFrameState(x, y, theta)

            print "In loop"

            if not self.checkInCollision():
                break

        return x, y, theta

    def setRandomCollisionFreeInitialState(self):
        tol = 5

        while True:

            x = np.random.uniform(self.world.Xmin + tol, self.world.Xmax - tol,
                                  1)[0]
            y = np.random.uniform(self.world.Ymin + tol, self.world.Ymax - tol,
                                  1)[0]
            theta = np.random.uniform(0, 2 * np.pi, 1)[0]

            self.Quad.setQuadState(x, y, theta)
            self.setRobotFrameState(x, y, theta)

            if not self.checkInCollision():
                break

        return x, y, theta

    def setupPlayback(self):

        self.timer = TimerCallback(targetFps=30)
        self.timer.callback = self.tick

        playButtonFps = 1.0 / self.dt
        print "playButtonFPS", playButtonFps
        self.playTimer = TimerCallback(targetFps=playButtonFps)
        self.playTimer.callback = self.playTimerCallback
        self.sliderMovedByPlayTimer = False

        panel = QtGui.QWidget()
        l = QtGui.QHBoxLayout(panel)

        playButton = QtGui.QPushButton('Play/Pause')
        playButton.connect('clicked()', self.onPlayButton)

        slider = QtGui.QSlider(QtCore.Qt.Horizontal)
        slider.connect('valueChanged(int)', self.onSliderChanged)
        self.sliderMax = self.numTimesteps
        slider.setMaximum(self.sliderMax)
        self.slider = slider

        l.addWidget(playButton)
        l.addWidget(slider)

        w = QtGui.QWidget()
        l = QtGui.QVBoxLayout(w)
        l.addWidget(self.view)
        l.addWidget(panel)
        w.showMaximized()

        self.frame.connectFrameModified(self.updateDrawIntersection)
        self.updateDrawIntersection(self.frame)

        applogic.resetCamera(viewDirection=[0.2, 0, -1])
        self.view.showMaximized()
        self.view.raise_()
        panel = screengrabberpanel.ScreenGrabberPanel(self.view)
        panel.widget.show()

        elapsed = time.time() - self.startSimTime
        simRate = self.counter / elapsed
        print "Total run time", elapsed
        print "Ticks (Hz)", simRate
        print "Number of steps taken", self.counter
        self.app.start()

    def run(self, launchApp=True):
        self.counter = 1
        self.runBatchSimulation()
        # self.Sarsa.plotWeights()

        if launchApp:
            self.setupPlayback()

    def updateDrawIntersection(self, frame):

        origin = np.array(frame.transform.GetPosition())
        #print "origin is now at", origin
        d = DebugData()

        sliderIdx = self.slider.value

        controllerType = self.getControllerTypeFromCounter(sliderIdx)
        colorMaxRange = self.colorMap[controllerType]

        for j in xrange(self.Sensor.numLayers):
            for i in xrange(self.Sensor.numRays):
                ray = self.Sensor.rays[:, i, j]
                rayTransformed = np.array(frame.transform.TransformNormal(ray))
                #print "rayTransformed is", rayTransformed
                intersection = self.Sensor.raycast(
                    self.locator, origin,
                    origin + rayTransformed * self.Sensor.rayLength)

                if intersection is not None:
                    d.addLine(origin, intersection, color=[1, 0, 0])
                else:
                    d.addLine(origin,
                              origin + rayTransformed * self.Sensor.rayLength,
                              color=colorMaxRange)

        vis.updatePolyData(d.getPolyData(), 'rays', colorByName='RGB255')

        #camera = self.view.camera()
        #camera.SetFocalPoint(frame.transform.GetPosition())
        #camera.SetPosition(frame.transform.TransformPoint((-30,0,10)))

    def getControllerTypeFromCounter(self, counter):
        name = self.controllerTypeOrder[0]

        for controllerType in self.controllerTypeOrder[1:]:
            if counter >= self.idxDict[controllerType]:
                name = controllerType

        return name

    def setRobotFrameState(self, x, y, theta):
        t = vtk.vtkTransform()
        t.Translate(x, y, 0.0)
        t.RotateZ(np.degrees(theta))
        self.robot.getChildFrame().copyFrame(t)

    # returns true if we are in collision
    def checkInCollision(self, raycastDistance=None):
        if raycastDistance is None:
            self.setRobotFrameState(self.Quad.state[0], self.Quad.state[1],
                                    self.Quad.state[2])
            raycastDistance = self.Sensor.raycastAll(self.frame)

        if np.min(raycastDistance) < self.collisionThreshold:
            return True
        else:
            return False

    def tick(self):
        #print timer.elapsed
        #simulate(t.elapsed)
        x = np.sin(time.time())
        y = np.cos(time.time())
        self.setRobotFrameState(x, y, 0.0)
        if (time.time() - self.playTime) > self.endTime:
            self.playTimer.stop()

    def tick2(self):
        newtime = time.time() - self.playTime
        print time.time() - self.playTime
        x = np.sin(newtime)
        y = np.cos(newtime)
        self.setRobotFrameState(x, y, 0.0)

    # just increment the slider, stop the timer if we get to the end
    def playTimerCallback(self):
        self.sliderMovedByPlayTimer = True
        currentIdx = self.slider.value
        nextIdx = currentIdx + 1
        self.slider.setSliderPosition(nextIdx)
        if currentIdx >= self.sliderMax:
            print "reached end of tape, stopping playTime"
            self.playTimer.stop()

    def onSliderChanged(self, value):
        if not self.sliderMovedByPlayTimer:
            self.playTimer.stop()
        numSteps = len(self.stateOverTime)
        idx = int(np.floor(numSteps * (1.0 * value / self.sliderMax)))
        idx = min(idx, numSteps - 1)
        x, y, theta = self.stateOverTime[idx]
        self.setRobotFrameState(x, y, theta)
        self.sliderMovedByPlayTimer = False

    def onPlayButton(self):

        if self.playTimer.isActive():
            self.onPauseButton()
            return

        print 'play'
        self.playTimer.start()
        self.playTime = time.time()

    def onPauseButton(self):
        print 'pause'
        self.playTimer.stop()

    def saveToFile(self, filename):

        # should also save the run data if it is available, i.e. stateOverTime, rewardOverTime

        filename = 'data/' + filename + ".out"
        my_shelf = shelve.open(filename, 'n')

        my_shelf['options'] = self.options

        my_shelf['simulationData'] = self.simulationData
        my_shelf['stateOverTime'] = self.stateOverTime
        my_shelf['raycastData'] = self.raycastData
        my_shelf['controlInputData'] = self.controlInputData
        my_shelf['numTimesteps'] = self.numTimesteps
        my_shelf['idxDict'] = self.idxDict
        my_shelf['counter'] = self.counter
        my_shelf.close()

    @staticmethod
    def loadFromFile(filename):
        filename = 'data/' + filename + ".out"
        sim = Simulator(autoInitialize=False, verbose=False)

        my_shelf = shelve.open(filename)
        sim.options = my_shelf['options']
        sim.initialize()

        sim.simulationData = my_shelf['simulationData']
        sim.stateOverTime = np.array(my_shelf['stateOverTime'])
        sim.raycastData = np.array(my_shelf['raycastData'])
        sim.controlInputData = np.array(my_shelf['controlInputData'])
        sim.numTimesteps = my_shelf['numTimesteps']
        sim.idxDict = my_shelf['idxDict']
        sim.counter = my_shelf['counter']

        my_shelf.close()

        return sim
예제 #33
0
from ddapp.consoleapp import ConsoleApp
from ddapp.debugVis import DebugData
import ddapp.visualization as vis

# initialize application components
app = ConsoleApp()
view = app.createView()
view.showMaximized()

# create a sphere primitive
d = DebugData()
d.addSphere(center=(0,0,0), radius=0.5)

# show the sphere in the visualization window
sphere = vis.showPolyData(d.getPolyData(), 'sphere')
sphere.setProperty('Color', [0,1,0])

# start the application
app.start()
예제 #34
0
import os

from ddapp.consoleapp import ConsoleApp
from ddapp import ioUtils
from ddapp import segmentation
from ddapp import segmentationroutines
from ddapp import applogic
from ddapp import visualization as vis

#from ddapp import roboturdf


app = ConsoleApp()

# create a view
view = app.createView()
segmentation._defaultSegmentationView = view


'''
robotStateModel, robotStateJointController = roboturdf.loadRobotModel('robot state model', view, parent='sensors', color=roboturdf.getRobotGrayColor(), visible=True)

segmentationroutines.SegmentationContext.initWithRobot(robotStateModel)

# Move Robot in front of the table:
robotStateJointController.q[5] = -0.63677# math.radians(120)
robotStateJointController.q[0] = 0.728
robotStateJointController.q[1] = -0.7596
robotStateJointController.q[2] = 0.79788
robotStateJointController.q[33] = 0.5 # head down
robotStateJointController.push()
예제 #35
0
import os
import math
from ddapp.consoleapp import ConsoleApp
from ddapp import ioUtils
from ddapp import segmentation
from ddapp import applogic
from ddapp import visualization as vis
from ddapp import continuouswalkingdemo
from ddapp import robotsystem
from ddapp import objectmodel as om
from ddapp import ikplanner
from ddapp import navigationpanel
from ddapp import cameraview

app = ConsoleApp()
dataDir = app.getTestingDataDirectory()
# create a view
view = app.createView()
segmentation._defaultSegmentationView = view

#footstepsPanel = footstepsdriverpanel.init(footstepsDriver, robotStateModel, robotStateJointController, mapServerSource)
footstepsPanel = None
robotsystem.create(view, globals())



def processSingleBlock(robotStateModel, whichFile=0):
    if (whichFile == 0):
        polyData = ioUtils.readPolyData(os.path.join(dataDir, 'tabletop/table_top_45.vtp'))
    else:
        polyData = ioUtils.readPolyData(os.path.join(dataDir, 'terrain/block_top.vtp'))
예제 #36
0
import ddapp
from ddapp.consoleapp import ConsoleApp
from ddapp import robotsystem
from ddapp import kinematicposeplanner as kpp


def onIkStartup(ikServer, startSuccess):
    kinematicPosePlanner.init()
    panel.testDemo()
    panel.ikServer.taskQueue.addTask(app.startTestingModeQuitTimer)


app = ConsoleApp()
app.setupGlobals(globals())

if app.getTestingInteractiveEnabled():
    app.showPythonConsole()

view = app.createView()
view.show()

robotsystem.create(view, globals())

ikServer.connectStartupCompleted(onIkStartup)
startIkServer()

kinematicPosePlanner = kpp.KinematicPosePlanner(ikServer)
panel = kpp.KinematicPosePlannerPanel(kinematicPosePlanner, ikServer,
                                      teleopJointController)

robotStateModel.setProperty('Visible', False)
class Simulator(object):
    def __init__(
        self,
        percentObsDensity=20,
        endTime=40,
        randomizeControl=False,
        nonRandomWorld=False,
        circleRadius=0.7,
        worldScale=1.0,
        supervisedTrainingTime=500,
        autoInitialize=True,
        verbose=True,
        sarsaType="discrete",
    ):
        self.verbose = verbose
        self.randomizeControl = randomizeControl
        self.startSimTime = time.time()
        self.collisionThreshold = 1.3
        self.randomSeed = 5
        self.Sarsa_numInnerBins = 4
        self.Sarsa_numOuterBins = 4
        self.Sensor_rayLength = 8
        self.sarsaType = sarsaType

        self.percentObsDensity = percentObsDensity
        self.supervisedTrainingTime = 10
        self.learningRandomTime = 10
        self.learningEvalTime = 10
        self.defaultControllerTime = 10
        self.nonRandomWorld = nonRandomWorld
        self.circleRadius = circleRadius
        self.worldScale = worldScale
        # create the visualizer object
        self.app = ConsoleApp()
        # view = app.createView(useGrid=False)
        self.view = self.app.createView(useGrid=False)

        self.initializeOptions()
        self.initializeColorMap()
        if autoInitialize:
            self.initialize()

    def initializeOptions(self):
        self.options = dict()

        self.options["Reward"] = dict()
        self.options["Reward"]["actionCost"] = 0.1
        self.options["Reward"]["collisionPenalty"] = 100.0
        self.options["Reward"]["raycastCost"] = 20.0

        self.options["SARSA"] = dict()
        self.options["SARSA"]["type"] = "discrete"
        self.options["SARSA"]["lam"] = 0.7
        self.options["SARSA"]["alphaStepSize"] = 0.2
        self.options["SARSA"]["useQLearningUpdate"] = False
        self.options["SARSA"]["epsilonGreedy"] = 0.2
        self.options["SARSA"]["burnInTime"] = 500
        self.options["SARSA"]["epsilonGreedyExponent"] = 0.3
        self.options["SARSA"]["exponentialDiscountFactor"] = 0.05  # so gamma = e^(-rho*dt)
        self.options["SARSA"]["numInnerBins"] = 5
        self.options["SARSA"]["numOuterBins"] = 4
        self.options["SARSA"]["binCutoff"] = 0.5

        self.options["World"] = dict()
        self.options["World"]["obstaclesInnerFraction"] = 0.85
        self.options["World"]["randomSeed"] = 40
        self.options["World"]["percentObsDensity"] = 7.5
        self.options["World"]["nonRandomWorld"] = True
        self.options["World"]["circleRadius"] = 1.75
        self.options["World"]["scale"] = 1.0

        self.options["Sensor"] = dict()
        self.options["Sensor"]["rayLength"] = 10
        self.options["Sensor"]["numRays"] = 20

        self.options["Car"] = dict()
        self.options["Car"]["velocity"] = 12

        self.options["dt"] = 0.05

        self.options["runTime"] = dict()
        self.options["runTime"]["supervisedTrainingTime"] = 10
        self.options["runTime"]["learningRandomTime"] = 10
        self.options["runTime"]["learningEvalTime"] = 10
        self.options["runTime"]["defaultControllerTime"] = 10

    def setDefaultOptions(self):

        defaultOptions = dict()

        defaultOptions["Reward"] = dict()
        defaultOptions["Reward"]["actionCost"] = 0.1
        defaultOptions["Reward"]["collisionPenalty"] = 100.0
        defaultOptions["Reward"]["raycastCost"] = 20.0

        defaultOptions["SARSA"] = dict()
        defaultOptions["SARSA"]["type"] = "discrete"
        defaultOptions["SARSA"]["lam"] = 0.7
        defaultOptions["SARSA"]["alphaStepSize"] = 0.2
        defaultOptions["SARSA"]["useQLearningUpdate"] = False
        defaultOptions["SARSA"]["useSupervisedTraining"] = True
        defaultOptions["SARSA"]["epsilonGreedy"] = 0.2
        defaultOptions["SARSA"]["burnInTime"] = 500
        defaultOptions["SARSA"]["epsilonGreedyExponent"] = 0.3
        defaultOptions["SARSA"]["exponentialDiscountFactor"] = 0.05  # so gamma = e^(-rho*dt)
        defaultOptions["SARSA"]["numInnerBins"] = 5
        defaultOptions["SARSA"]["numOuterBins"] = 4
        defaultOptions["SARSA"]["binCutoff"] = 0.5
        defaultOptions["SARSA"]["forceDriveStraight"] = True

        defaultOptions["World"] = dict()
        defaultOptions["World"]["obstaclesInnerFraction"] = 0.85
        defaultOptions["World"]["randomSeed"] = 40
        defaultOptions["World"]["percentObsDensity"] = 7.5
        defaultOptions["World"]["nonRandomWorld"] = True
        defaultOptions["World"]["circleRadius"] = 1.75
        defaultOptions["World"]["scale"] = 1.0

        defaultOptions["Sensor"] = dict()
        defaultOptions["Sensor"]["rayLength"] = 10
        defaultOptions["Sensor"]["numRays"] = 20

        defaultOptions["Car"] = dict()
        defaultOptions["Car"]["velocity"] = 12

        defaultOptions["dt"] = 0.05

        defaultOptions["runTime"] = dict()
        defaultOptions["runTime"]["supervisedTrainingTime"] = 10
        defaultOptions["runTime"]["learningRandomTime"] = 10
        defaultOptions["runTime"]["learningEvalTime"] = 10
        defaultOptions["runTime"]["defaultControllerTime"] = 10

        for k in defaultOptions:
            self.options.setdefault(k, defaultOptions[k])

        for k in defaultOptions:
            if not isinstance(defaultOptions[k], dict):
                continue

            for j in defaultOptions[k]:
                self.options[k].setdefault(j, defaultOptions[k][j])

    def initializeColorMap(self):
        self.colorMap = dict()
        self.colorMap["defaultRandom"] = [0, 0, 1]
        self.colorMap["learnedRandom"] = [1.0, 0.54901961, 0.0]  # this is orange
        self.colorMap["learned"] = [0.58039216, 0.0, 0.82745098]  # this is yellow
        self.colorMap["default"] = [0, 1, 0]

    def initialize(self):

        self.dt = self.options["dt"]
        self.controllerTypeOrder = ["defaultRandom", "learnedRandom", "learned", "default"]

        self.setDefaultOptions()

        self.Sensor = SensorObj(
            rayLength=self.options["Sensor"]["rayLength"], numRays=self.options["Sensor"]["numRays"]
        )
        self.Controller = ControllerObj(self.Sensor)
        self.Car = CarPlant(controller=self.Controller, velocity=self.options["Car"]["velocity"])
        self.Reward = Reward(
            self.Sensor,
            collisionThreshold=self.collisionThreshold,
            actionCost=self.options["Reward"]["actionCost"],
            collisionPenalty=self.options["Reward"]["collisionPenalty"],
            raycastCost=self.options["Reward"]["raycastCost"],
        )
        self.setSARSA()

        # create the things needed for simulation
        om.removeFromObjectModel(om.findObjectByName("world"))
        self.world = World.buildCircleWorld(
            percentObsDensity=self.options["World"]["percentObsDensity"],
            circleRadius=self.options["World"]["circleRadius"],
            nonRandom=self.options["World"]["nonRandomWorld"],
            scale=self.options["World"]["scale"],
            randomSeed=self.options["World"]["randomSeed"],
            obstaclesInnerFraction=self.options["World"]["obstaclesInnerFraction"],
        )

        om.removeFromObjectModel(om.findObjectByName("robot"))
        self.robot, self.frame = World.buildRobot()
        self.locator = World.buildCellLocator(self.world.visObj.polyData)
        self.Sensor.setLocator(self.locator)
        self.frame = self.robot.getChildFrame()
        self.frame.setProperty("Scale", 3)
        self.frame.setProperty("Edit", True)
        self.frame.widget.HandleRotationEnabledOff()
        rep = self.frame.widget.GetRepresentation()
        rep.SetTranslateAxisEnabled(2, False)
        rep.SetRotateAxisEnabled(0, False)
        rep.SetRotateAxisEnabled(1, False)

        self.supervisedTrainingTime = self.options["runTime"]["supervisedTrainingTime"]
        self.learningRandomTime = self.options["runTime"]["learningRandomTime"]
        self.learningEvalTime = self.options["runTime"]["learningEvalTime"]
        self.defaultControllerTime = self.options["runTime"]["defaultControllerTime"]

        self.Car.setFrame(self.frame)
        print "Finished initialization"

    def setSARSA(self, type=None):
        if type is None:
            type = self.options["SARSA"]["type"]

        if type == "discrete":
            self.Sarsa = SARSADiscrete(
                sensorObj=self.Sensor,
                actionSet=self.Controller.actionSet,
                collisionThreshold=self.collisionThreshold,
                alphaStepSize=self.options["SARSA"]["alphaStepSize"],
                useQLearningUpdate=self.options["SARSA"]["useQLearningUpdate"],
                lam=self.options["SARSA"]["lam"],
                numInnerBins=self.options["SARSA"]["numInnerBins"],
                numOuterBins=self.options["SARSA"]["numOuterBins"],
                binCutoff=self.options["SARSA"]["binCutoff"],
                burnInTime=self.options["SARSA"]["burnInTime"],
                epsilonGreedy=self.options["SARSA"]["epsilonGreedy"],
                epsilonGreedyExponent=self.options["SARSA"]["epsilonGreedyExponent"],
                forceDriveStraight=self.options["SARSA"]["forceDriveStraight"],
            )
        elif type == "continuous":
            self.Sarsa = SARSAContinuous(
                sensorObj=self.Sensor,
                actionSet=self.Controller.actionSet,
                lam=self.options["SARSA"]["lam"],
                alphaStepSize=self.options["SARSA"]["alphaStepSize"],
                collisionThreshold=self.collisionThreshold,
                burnInTime=self.options["SARSA"]["burnInTime"],
                epsilonGreedy=self.options["SARSA"]["epsilonGreedy"],
                epsilonGreedyExponent=self.options["SARSA"]["epsilonGreedyExponent"],
            )
        else:
            raise ValueError("sarsa type must be either discrete or continuous")

    def runSingleSimulation(self, updateQValues=True, controllerType="default", simulationCutoff=None):

        if self.verbose:
            print "using QValue based controller = ", useQValueController

        self.setCollisionFreeInitialState()

        currentCarState = np.copy(self.Car.state)
        nextCarState = np.copy(self.Car.state)
        self.setRobotFrameState(currentCarState[0], currentCarState[1], currentCarState[2])
        currentRaycast = self.Sensor.raycastAll(self.frame)
        nextRaycast = np.zeros(self.Sensor.numRays)
        self.Sarsa.resetElibilityTraces()

        # record the reward data
        runData = dict()
        reward = 0
        discountedReward = 0
        avgReward = 0
        startIdx = self.counter

        while self.counter < self.numTimesteps - 1:
            idx = self.counter
            currentTime = self.t[idx]
            self.stateOverTime[idx, :] = currentCarState
            x = self.stateOverTime[idx, 0]
            y = self.stateOverTime[idx, 1]
            theta = self.stateOverTime[idx, 2]
            self.setRobotFrameState(x, y, theta)
            # self.setRobotState(currentCarState[0], currentCarState[1], currentCarState[2])
            currentRaycast = self.Sensor.raycastAll(self.frame)
            self.raycastData[idx, :] = currentRaycast
            S_current = (currentCarState, currentRaycast)

            if controllerType not in self.colorMap.keys():
                print
                raise ValueError("controller of type " + controllerType + " not supported")

            if controllerType in ["default", "defaultRandom"]:
                if controllerType == "defaultRandom":
                    controlInput, controlInputIdx = self.Controller.computeControlInput(
                        currentCarState, currentTime, self.frame, raycastDistance=currentRaycast, randomize=True
                    )
                else:
                    controlInput, controlInputIdx = self.Controller.computeControlInput(
                        currentCarState, currentTime, self.frame, raycastDistance=currentRaycast, randomize=False
                    )

            if controllerType in ["learned", "learnedRandom"]:
                if controllerType == "learned":
                    randomizeControl = False
                else:
                    randomizeControl = True

                counterForGreedyDecay = self.counter - self.idxDict["learnedRandom"]
                controlInput, controlInputIdx, emptyQValue = self.Sarsa.computeGreedyControlPolicy(
                    S_current, counter=counterForGreedyDecay, randomize=randomizeControl
                )

                self.emptyQValue[idx] = emptyQValue
                if emptyQValue and self.options["SARSA"]["useSupervisedTraining"]:
                    controlInput, controlInputIdx = self.Controller.computeControlInput(
                        currentCarState, currentTime, self.frame, raycastDistance=currentRaycast, randomize=False
                    )

            self.controlInputData[idx] = controlInput

            nextCarState = self.Car.simulateOneStep(controlInput=controlInput, dt=self.dt)

            # want to compute nextRaycast so we can do the SARSA algorithm
            x = nextCarState[0]
            y = nextCarState[1]
            theta = nextCarState[2]
            self.setRobotFrameState(x, y, theta)
            nextRaycast = self.Sensor.raycastAll(self.frame)

            # Compute the next control input
            S_next = (nextCarState, nextRaycast)

            if controllerType in ["default", "defaultRandom"]:
                if controllerType == "defaultRandom":
                    nextControlInput, nextControlInputIdx = self.Controller.computeControlInput(
                        nextCarState, currentTime, self.frame, raycastDistance=nextRaycast, randomize=True
                    )
                else:
                    nextControlInput, nextControlInputIdx = self.Controller.computeControlInput(
                        nextCarState, currentTime, self.frame, raycastDistance=nextRaycast, randomize=False
                    )

            if controllerType in ["learned", "learnedRandom"]:
                if controllerType == "learned":
                    randomizeControl = False
                else:
                    randomizeControl = True

                counterForGreedyDecay = self.counter - self.idxDict["learnedRandom"]
                nextControlInput, nextControlInputIdx, emptyQValue = self.Sarsa.computeGreedyControlPolicy(
                    S_next, counter=counterForGreedyDecay, randomize=randomizeControl
                )

                if emptyQValue and self.options["SARSA"]["useSupervisedTraining"]:
                    nextControlInput, nextControlInputIdx = self.Controller.computeControlInput(
                        nextCarState, currentTime, self.frame, raycastDistance=nextRaycast, randomize=False
                    )

            # if useQValueController:
            #     nextControlInput, nextControlInputIdx, emptyQValue = self.Sarsa.computeGreedyControlPolicy(S_next)
            #
            # if not useQValueController or emptyQValue:
            #     nextControlInput, nextControlInputIdx = self.Controller.computeControlInput(nextCarState, currentTime, self.frame,
            #                                                                             raycastDistance=nextRaycast)

            # compute the reward
            reward = self.Reward.computeReward(S_next, controlInput)
            self.rewardData[idx] = reward

            discountedReward += self.Sarsa.gamma ** (self.counter - startIdx) * reward
            avgReward += reward

            ###### SARSA update
            if updateQValues:
                self.Sarsa.sarsaUpdate(S_current, controlInputIdx, reward, S_next, nextControlInputIdx)

            # bookkeeping
            currentCarState = nextCarState
            currentRaycast = nextRaycast
            self.counter += 1
            # break if we are in collision
            if self.checkInCollision(nextRaycast):
                if self.verbose:
                    print "Had a collision, terminating simulation"
                break

            if self.counter >= simulationCutoff:
                break

        # fill in the last state by hand
        self.stateOverTime[self.counter, :] = currentCarState
        self.raycastData[self.counter, :] = currentRaycast

        # return the total reward
        avgRewardNoCollisionPenalty = avgReward - reward
        avgReward = avgReward * 1.0 / max(1, self.counter - startIdx)
        avgRewardNoCollisionPenalty = avgRewardNoCollisionPenalty * 1.0 / max(1, self.counter - startIdx)
        # this extra multiplication is so that it is in the same "units" as avgReward
        runData["discountedReward"] = discountedReward * (1 - self.Sarsa.gamma)
        runData["avgReward"] = avgReward
        runData["avgRewardNoCollisionPenalty"] = avgRewardNoCollisionPenalty

        # this just makes sure we don't get stuck in an infinite loop.
        if startIdx == self.counter:
            self.counter += 1

        return runData

    def setNumpyRandomSeed(self, seed=1):
        np.random.seed(seed)

    def runBatchSimulation(self, endTime=None, dt=0.05):

        # for use in playback
        self.dt = self.options["dt"]
        self.Sarsa.setDiscountFactor(dt)

        self.endTime = (
            self.supervisedTrainingTime + self.learningRandomTime + self.learningEvalTime + self.defaultControllerTime
        )

        self.t = np.arange(0.0, self.endTime, dt)
        maxNumTimesteps = np.size(self.t)
        self.stateOverTime = np.zeros((maxNumTimesteps + 1, 3))
        self.raycastData = np.zeros((maxNumTimesteps + 1, self.Sensor.numRays))
        self.controlInputData = np.zeros(maxNumTimesteps + 1)
        self.rewardData = np.zeros(maxNumTimesteps + 1)
        self.emptyQValue = np.zeros(maxNumTimesteps + 1, dtype="bool")
        self.numTimesteps = maxNumTimesteps

        self.controllerTypeOrder = ["defaultRandom", "learnedRandom", "learned", "default"]
        self.counter = 0
        self.simulationData = []

        self.initializeStatusBar()

        self.idxDict = dict()
        numRunsCounter = 0

        # three while loops for different phases of simulation, supervisedTraining, learning, default
        self.idxDict["defaultRandom"] = self.counter
        loopStartIdx = self.counter
        simCutoff = min(loopStartIdx + self.supervisedTrainingTime / dt, self.numTimesteps)
        while (self.counter - loopStartIdx < self.supervisedTrainingTime / dt) and self.counter < self.numTimesteps:
            self.printStatusBar()
            useQValueController = False
            startIdx = self.counter
            runData = self.runSingleSimulation(
                updateQValues=True, controllerType="defaultRandom", simulationCutoff=simCutoff
            )

            runData["startIdx"] = startIdx
            runData["controllerType"] = "defaultRandom"
            runData["duration"] = self.counter - runData["startIdx"]
            runData["endIdx"] = self.counter
            runData["runNumber"] = numRunsCounter
            numRunsCounter += 1
            self.simulationData.append(runData)

        self.idxDict["learnedRandom"] = self.counter
        loopStartIdx = self.counter
        simCutoff = min(loopStartIdx + self.learningRandomTime / dt, self.numTimesteps)
        while (self.counter - loopStartIdx < self.learningRandomTime / dt) and self.counter < self.numTimesteps:
            self.printStatusBar()
            startIdx = self.counter
            runData = self.runSingleSimulation(
                updateQValues=True, controllerType="learnedRandom", simulationCutoff=simCutoff
            )
            runData["startIdx"] = startIdx
            runData["controllerType"] = "learnedRandom"
            runData["duration"] = self.counter - runData["startIdx"]
            runData["endIdx"] = self.counter
            runData["runNumber"] = numRunsCounter
            numRunsCounter += 1
            self.simulationData.append(runData)

        self.idxDict["learned"] = self.counter
        loopStartIdx = self.counter
        simCutoff = min(loopStartIdx + self.learningEvalTime / dt, self.numTimesteps)
        while (self.counter - loopStartIdx < self.learningEvalTime / dt) and self.counter < self.numTimesteps:

            self.printStatusBar()
            startIdx = self.counter
            runData = self.runSingleSimulation(
                updateQValues=False, controllerType="learned", simulationCutoff=simCutoff
            )
            runData["startIdx"] = startIdx
            runData["controllerType"] = "learned"
            runData["duration"] = self.counter - runData["startIdx"]
            runData["endIdx"] = self.counter
            runData["runNumber"] = numRunsCounter
            numRunsCounter += 1
            self.simulationData.append(runData)

        self.idxDict["default"] = self.counter
        loopStartIdx = self.counter
        simCutoff = min(loopStartIdx + self.defaultControllerTime / dt, self.numTimesteps)
        while (self.counter - loopStartIdx < self.defaultControllerTime / dt) and self.counter < self.numTimesteps - 1:
            self.printStatusBar()
            startIdx = self.counter
            runData = self.runSingleSimulation(
                updateQValues=False, controllerType="default", simulationCutoff=simCutoff
            )
            runData["startIdx"] = startIdx
            runData["controllerType"] = "default"
            runData["duration"] = self.counter - runData["startIdx"]
            runData["endIdx"] = self.counter
            runData["runNumber"] = numRunsCounter
            numRunsCounter += 1
            self.simulationData.append(runData)

        # BOOKKEEPING
        # truncate stateOverTime, raycastData, controlInputs to be the correct size
        self.numTimesteps = self.counter + 1
        self.stateOverTime = self.stateOverTime[0 : self.counter + 1, :]
        self.raycastData = self.raycastData[0 : self.counter + 1, :]
        self.controlInputData = self.controlInputData[0 : self.counter + 1]
        self.rewardData = self.rewardData[0 : self.counter + 1]
        self.endTime = 1.0 * self.counter / self.numTimesteps * self.endTime

    def initializeStatusBar(self):
        self.numTicks = 10
        self.nextTickComplete = 1.0 / float(self.numTicks)
        self.nextTickIdx = 1
        print "Simulation percentage complete: (", self.numTicks, " # is complete)"

    def printStatusBar(self):
        fractionDone = float(self.counter) / float(self.numTimesteps)
        if fractionDone > self.nextTickComplete:

            self.nextTickIdx += 1
            self.nextTickComplete += 1.0 / self.numTicks

            timeSoFar = time.time() - self.startSimTime
            estimatedTimeLeft_sec = (1 - fractionDone) * timeSoFar / fractionDone
            estimatedTimeLeft_minutes = estimatedTimeLeft_sec / 60.0

            print "#" * self.nextTickIdx, "-" * (
                self.numTicks - self.nextTickIdx
            ), "estimated", estimatedTimeLeft_minutes, "minutes left"

    def setCollisionFreeInitialState(self):
        tol = 5

        while True:
            x = np.random.uniform(self.world.Xmin + tol, self.world.Xmax - tol, 1)[0]
            y = np.random.uniform(self.world.Ymin + tol, self.world.Ymax - tol, 1)[0]
            theta = np.random.uniform(0, 2 * np.pi, 1)[0]
            self.Car.setCarState(x, y, theta)
            self.setRobotFrameState(x, y, theta)

            if not self.checkInCollision():
                break

        # if self.checkInCollision():
        #     print "IN COLLISION"
        # else:
        #     print "COLLISION FREE"

        return x, y, theta

    def setupPlayback(self):

        self.timer = TimerCallback(targetFps=30)
        self.timer.callback = self.tick

        playButtonFps = 1.0 / self.dt
        print "playButtonFPS", playButtonFps
        self.playTimer = TimerCallback(targetFps=playButtonFps)
        self.playTimer.callback = self.playTimerCallback
        self.sliderMovedByPlayTimer = False

        panel = QtGui.QWidget()
        l = QtGui.QHBoxLayout(panel)

        playButton = QtGui.QPushButton("Play/Pause")
        playButton.connect("clicked()", self.onPlayButton)

        slider = QtGui.QSlider(QtCore.Qt.Horizontal)
        slider.connect("valueChanged(int)", self.onSliderChanged)
        self.sliderMax = self.numTimesteps
        slider.setMaximum(self.sliderMax)
        self.slider = slider

        l.addWidget(playButton)
        l.addWidget(slider)

        w = QtGui.QWidget()
        l = QtGui.QVBoxLayout(w)
        l.addWidget(self.view)
        l.addWidget(panel)
        w.showMaximized()

        self.frame.connectFrameModified(self.updateDrawIntersection)
        self.updateDrawIntersection(self.frame)

        applogic.resetCamera(viewDirection=[0.2, 0, -1])
        self.view.showMaximized()
        self.view.raise_()
        panel = screengrabberpanel.ScreenGrabberPanel(self.view)
        panel.widget.show()

        elapsed = time.time() - self.startSimTime
        simRate = self.counter / elapsed
        print "Total run time", elapsed
        print "Ticks (Hz)", simRate
        print "Number of steps taken", self.counter
        self.app.start()

    def run(self, launchApp=True):
        self.counter = 1
        self.runBatchSimulation()
        # self.Sarsa.plotWeights()

        if launchApp:
            self.setupPlayback()

    def updateDrawIntersection(self, frame):

        origin = np.array(frame.transform.GetPosition())
        # print "origin is now at", origin
        d = DebugData()

        sliderIdx = self.slider.value

        controllerType = self.getControllerTypeFromCounter(sliderIdx)
        colorMaxRange = self.colorMap[controllerType]

        # if the QValue was empty then color it green
        if self.emptyQValue[sliderIdx]:
            colorMaxRange = [1, 1, 0]  # this is yellow

        for i in xrange(self.Sensor.numRays):
            ray = self.Sensor.rays[:, i]
            rayTransformed = np.array(frame.transform.TransformNormal(ray))
            # print "rayTransformed is", rayTransformed
            intersection = self.Sensor.raycast(self.locator, origin, origin + rayTransformed * self.Sensor.rayLength)

            if intersection is not None:
                d.addLine(origin, intersection, color=[1, 0, 0])
            else:
                d.addLine(origin, origin + rayTransformed * self.Sensor.rayLength, color=colorMaxRange)

        vis.updatePolyData(d.getPolyData(), "rays", colorByName="RGB255")

        # camera = self.view.camera()
        # camera.SetFocalPoint(frame.transform.GetPosition())
        # camera.SetPosition(frame.transform.TransformPoint((-30,0,10)))

    def getControllerTypeFromCounter(self, counter):
        name = self.controllerTypeOrder[0]

        for controllerType in self.controllerTypeOrder[1:]:
            if counter >= self.idxDict[controllerType]:
                name = controllerType

        return name

    def setRobotFrameState(self, x, y, theta):
        t = vtk.vtkTransform()
        t.Translate(x, y, 0.0)
        t.RotateZ(np.degrees(theta))
        self.robot.getChildFrame().copyFrame(t)

    # returns true if we are in collision
    def checkInCollision(self, raycastDistance=None):
        if raycastDistance is None:
            self.setRobotFrameState(self.Car.state[0], self.Car.state[1], self.Car.state[2])
            raycastDistance = self.Sensor.raycastAll(self.frame)

        if np.min(raycastDistance) < self.collisionThreshold:
            return True
        else:
            return False

    def tick(self):
        # print timer.elapsed
        # simulate(t.elapsed)
        x = np.sin(time.time())
        y = np.cos(time.time())
        self.setRobotFrameState(x, y, 0.0)
        if (time.time() - self.playTime) > self.endTime:
            self.playTimer.stop()

    def tick2(self):
        newtime = time.time() - self.playTime
        print time.time() - self.playTime
        x = np.sin(newtime)
        y = np.cos(newtime)
        self.setRobotFrameState(x, y, 0.0)

    # just increment the slider, stop the timer if we get to the end
    def playTimerCallback(self):
        self.sliderMovedByPlayTimer = True
        currentIdx = self.slider.value
        nextIdx = currentIdx + 1
        self.slider.setSliderPosition(nextIdx)
        if currentIdx >= self.sliderMax:
            print "reached end of tape, stopping playTime"
            self.playTimer.stop()

    def onSliderChanged(self, value):
        if not self.sliderMovedByPlayTimer:
            self.playTimer.stop()
        numSteps = len(self.stateOverTime)
        idx = int(np.floor(numSteps * (1.0 * value / self.sliderMax)))
        idx = min(idx, numSteps - 1)
        x, y, theta = self.stateOverTime[idx]
        self.setRobotFrameState(x, y, theta)
        self.sliderMovedByPlayTimer = False

    def onPlayButton(self):

        if self.playTimer.isActive():
            self.onPauseButton()
            return

        print "play"
        self.playTimer.start()
        self.playTime = time.time()

    def onPauseButton(self):
        print "pause"
        self.playTimer.stop()

    def computeRunStatistics(self):
        numRuns = len(self.simulationData)
        runStart = np.zeros(numRuns)
        runDuration = np.zeros(numRuns)
        grid = np.arange(1, numRuns + 1)
        discountedReward = np.zeros(numRuns)
        avgReward = np.zeros(numRuns)
        avgRewardNoCollisionPenalty = np.zeros(numRuns)

        idxMap = dict()

        for controllerType, color in self.colorMap.iteritems():
            idxMap[controllerType] = np.zeros(numRuns, dtype=bool)

        for idx, val in enumerate(self.simulationData):
            runStart[idx] = val["startIdx"]
            runDuration[idx] = val["duration"]
            discountedReward[idx] = val["discountedReward"]
            avgReward[idx] = val["avgReward"]
            avgRewardNoCollisionPenalty[idx] = val["avgRewardNoCollisionPenalty"]
            controllerType = val["controllerType"]
            idxMap[controllerType][idx] = True

    def plotRunData(self, controllerTypeToPlot=None, showPlot=True, onlyLearned=False):

        if controllerTypeToPlot == None:
            controllerTypeToPlot = self.colorMap.keys()

        if onlyLearned:
            controllerTypeToPlot = ["learnedRandom", "learned"]

        numRuns = len(self.simulationData)
        runStart = np.zeros(numRuns)
        runDuration = np.zeros(numRuns)
        grid = np.arange(1, numRuns + 1)
        discountedReward = np.zeros(numRuns)
        avgReward = np.zeros(numRuns)
        avgRewardNoCollisionPenalty = np.zeros(numRuns)

        idxMap = dict()

        for controllerType, color in self.colorMap.iteritems():
            idxMap[controllerType] = np.zeros(numRuns, dtype=bool)

        for idx, val in enumerate(self.simulationData):
            runStart[idx] = val["startIdx"]
            runDuration[idx] = val["duration"]
            discountedReward[idx] = val["discountedReward"]
            avgReward[idx] = val["avgReward"]
            avgRewardNoCollisionPenalty[idx] = val["avgRewardNoCollisionPenalty"]
            controllerType = val["controllerType"]
            idxMap[controllerType][idx] = True

            # usedQValueController[idx] = (val['controllerType'] == "QValue")
            # usedDefaultController[idx] = (val['controllerType'] == "default")
            # usedDefaultRandomController[idx] = (val['controllerType'] == "defaultRandom")
            # usedQValueRandomController[idx] = (val['controllerType'] == "QValueRandom")

        self.runStatistics = dict()
        dataMap = {
            "duration": runDuration,
            "discountedReward": discountedReward,
            "avgReward": avgReward,
            "avgRewardNoCollisionPenalty": avgRewardNoCollisionPenalty,
        }

        def computeRunStatistics(dataMap):
            for controllerType, idx in idxMap.iteritems():
                d = dict()
                for dataName, dataSet in dataMap.iteritems():
                    # average the appropriate values in dataset
                    d[dataName] = np.sum(dataSet[idx]) / (1.0 * np.size(dataSet[idx]))

                self.runStatistics[controllerType] = d

        computeRunStatistics(dataMap)

        if not showPlot:
            return

        plt.figure()

        #
        # idxDefaultRandom = np.where(usedDefaultRandomController==True)[0]
        # idxQValueController = np.where(usedQValueController==True)[0]
        # idxQValueControllerRandom = np.where(usedQValueControllerRandom==True)[0]
        # idxDefault = np.where(usedDefaultController==True)[0]
        #
        # plotData = dict()
        # plotData['defaultRandom'] = {'idx': idxDefaultRandom, 'color': 'b'}
        # plotData['QValue'] = {'idx': idxQValueController, 'color': 'y'}
        # plotData['default'] = {'idx': idxDefault, 'color': 'g'}

        def scatterPlot(dataToPlot):
            for controllerType in controllerTypeToPlot:
                idx = idxMap[controllerType]
                plt.scatter(grid[idx], dataToPlot[idx], color=self.colorMap[controllerType])

        def barPlot(dataName):
            plt.title(dataName)
            barWidth = 0.5
            barCounter = 0
            index = np.arange(len(controllerTypeToPlot))

            for controllerType in controllerTypeToPlot:
                val = self.runStatistics[controllerType]
                plt.bar(barCounter, val[dataName], barWidth, color=self.colorMap[controllerType], label=controllerType)
                barCounter += 1

            plt.xticks(index + barWidth / 2.0, controllerTypeToPlot)

        plt.subplot(4, 1, 1)
        plt.title("run duration")
        scatterPlot(runDuration)
        # for controllerType, idx in idxMap.iteritems():
        #     plt.scatter(grid[idx], runDuration[idx], color=self.colorMap[controllerType])

        # plt.scatter(runStart[idxDefaultRandom], runDuration[idxDefaultRandom], color='b')
        # plt.scatter(runStart[idxQValueController], runDuration[idxQValueController], color='y')
        # plt.scatter(runStart[idxDefault], runDuration[idxDefault], color='g')
        plt.xlabel("run #")
        plt.ylabel("episode duration")

        plt.subplot(2, 1, 2)
        plt.title("discounted reward")
        scatterPlot(discountedReward)
        # for key, val in plotData.iteritems():
        #     plt.scatter(grid[idx], discountedReward[idx], color=self.colorMap[controllerType])

        # plt.subplot(3,1,3)
        # plt.title("average reward")
        # scatterPlot(avgReward)
        # for key, val in plotData.iteritems():
        #     plt.scatter(grid[val['idx']],avgReward[val['idx']], color=val['color'])

        # plt.subplot(4,1,4)
        # plt.title("average reward no collision penalty")
        # scatterPlot(avgRewardNoCollisionPenalty)
        # # for key, val in plotData.iteritems():
        # #     plt.scatter(grid[val['idx']],avgRewardNoCollisionPenalty[val['idx']], color=val['color'])

        ## plot summary statistics
        plt.figure()

        plt.subplot(2, 1, 1)
        barPlot("duration")

        plt.subplot(2, 1, 2)
        barPlot("discountedReward")

        # plt.subplot(3,1,3)
        # barPlot("avgReward")
        #
        # plt.subplot(4,1,4)
        # barPlot("avgRewardNoCollisionPenalty")

        plt.show()

    def plotMultipleRunData(self, simList, toPlot=["duration", "discountedReward"], controllerType="learned"):

        plt.figure()
        numPlots = len(toPlot)

        grid = np.arange(len(simList))

        def plot(fieldToPlot, plotNum):
            plt.subplot(numPlots, 1, plotNum)
            plt.title(fieldToPlot)
            val = 0 * grid
            barWidth = 0.5
            barCounter = 0
            for idx, sim in enumerate(simList):
                value = sim.runStatistics[controllerType][fieldToPlot]
                plt.bar(idx, value, barWidth)

        counter = 1
        for fieldToPlot in toPlot:
            plot(fieldToPlot, counter)
            counter += 1

        plt.show()

    def saveToFile(self, filename):

        # should also save the run data if it is available, i.e. stateOverTime, rewardOverTime

        filename = "data/" + filename + ".out"
        my_shelf = shelve.open(filename, "n")

        my_shelf["options"] = self.options

        if self.options["SARSA"]["type"] == "discrete":
            my_shelf["SARSA_QValues"] = self.Sarsa.QValues

        my_shelf["simulationData"] = self.simulationData
        my_shelf["stateOverTime"] = self.stateOverTime
        my_shelf["raycastData"] = self.raycastData
        my_shelf["controlInputData"] = self.controlInputData
        my_shelf["emptyQValue"] = self.emptyQValue
        my_shelf["numTimesteps"] = self.numTimesteps
        my_shelf["idxDict"] = self.idxDict
        my_shelf["counter"] = self.counter
        my_shelf.close()

    @staticmethod
    def loadFromFile(filename):
        filename = "data/" + filename + ".out"
        sim = Simulator(autoInitialize=False, verbose=False)

        my_shelf = shelve.open(filename)
        sim.options = my_shelf["options"]
        sim.initialize()

        if sim.options["SARSA"]["type"] == "discrete":
            sim.Sarsa.QValues = np.array(my_shelf["SARSA_QValues"])

        sim.simulationData = my_shelf["simulationData"]
        # sim.runStatistics = my_shelf['runStatistics']
        sim.stateOverTime = np.array(my_shelf["stateOverTime"])
        sim.raycastData = np.array(my_shelf["raycastData"])
        sim.controlInputData = np.array(my_shelf["controlInputData"])
        sim.emptyQValue = np.array(my_shelf["emptyQValue"])
        sim.numTimesteps = my_shelf["numTimesteps"]
        sim.idxDict = my_shelf["idxDict"]
        sim.counter = my_shelf["counter"]

        my_shelf.close()

        return sim
예제 #38
0
from ddapp.consoleapp import ConsoleApp
from ddapp import visualization as vis
from ddapp import roboturdf

app = ConsoleApp()
view = app.createView()

robotStateModel, robotStateJointController = roboturdf.loadRobotModel('robot state model', view, parent='sensors', color=roboturdf.getRobotGrayColor(), visible=True)

print 'urdf file:', robotStateModel.getProperty('Filename')

for joint in robotStateModel.model.getJointNames():
    print 'joint:', joint

for link in robotStateModel.model.getLinkNames():
    print 'link:', link
    robotStateModel.getLinkFrame(link)

robotStateModel.addToView(view)

if app.getTestingInteractiveEnabled():
    view.show()
    app.start()
예제 #39
0
from ddapp.consoleapp import ConsoleApp
from ddapp import lcmspy
from ddapp import lcmUtils
from ddapp import simpletimer as st

app = ConsoleApp()

app.setupGlobals(globals())

if app.getTestingInteractiveEnabled():
    app.showPythonConsole()

lcmspy.findLCMModulesInSysPath()

timer = st.SimpleTimer()
stats = {}

channelToMsg = {}
items = {}


def item(r, c):
    rowDict = items.setdefault(r, {})
    try:
        return rowDict[c]

    except KeyError:
        i = QtGui.QTableWidgetItem('')
        table.setItem(r, c, i)
        rowDict[c] = i
        return i
예제 #40
0
    assert not checkGraspFrame(goalFrame, side)
    frame = teleopPanel.endEffectorTeleop.newReachTeleop(goalFrame, side)
    assert checkGraspFrame(goalFrame, side)

    teleopPanel.ui.planButton.click()
    assert playbackPanel.plan is not None

    teleopPanel.ikPlanner.useCollision = True
    teleopPanel.ui.planButton.click()
    assert playbackPanel.plan is not None

    frame.setProperty('Edit', True)
    app.startTestingModeQuitTimer()


app = ConsoleApp()
app.setupGlobals(globals())

view = app.createView()
robotsystem.create(view, globals())

playbackPanel = playbackpanel.PlaybackPanel(planPlayback, playbackRobotModel,
                                            playbackJointController,
                                            robotStateModel,
                                            robotStateJointController,
                                            manipPlanner)

teleopPanel = teleoppanel.TeleopPanel(robotStateModel,
                                      robotStateJointController,
                                      teleopRobotModel, teleopJointController,
                                      ikPlanner, manipPlanner,
예제 #41
0
from ddapp import affordanceurdf
from ddapp import objectmodel as om
from ddapp import visualization as vis
from ddapp import lcmUtils
from ddapp import ioUtils
from ddapp.debugVis import DebugData
from ddapp.timercallback import TimerCallback
from ddapp import segmentation
from ddapp.uuidutil import newUUID
from ddapp import geometryencoder
from ddapp import sceneloader
import drc as lcmdrc
import os
import json
from ddapp.utime import getUtime
app = ConsoleApp()

app.setupGlobals(globals())
app.showPythonConsole()

view = app.createView()
view.show()

robotsystem.create(view, globals())


def affordanceFromDescription(desc):
    affordanceManager.collection.updateDescription(desc)
    return affordanceManager.getAffordanceById(desc['uuid'])

def newBox():
예제 #42
0
from ddapp.consoleapp import ConsoleApp
from ddapp import atlasdriver
from ddapp import consoleapp
from ddapp.timercallback import TimerCallback
from ddapp import robotsystem
from PythonQt import QtCore, QtGui
from collections import namedtuple
import time, math

FPS = 4
LABEL_DEFAULT_STYLE_SHEET = "font: 36pt; border-style: outset; border-width: 2px; border-color: black;"
TITLE_DEFAULT_STYLE_SHEET = "font: 24pt"
atlasDriver = atlasdriver.init()

app = ConsoleApp()
app.setupGlobals(globals())
view = app.createView()
robotsystem.create(view, globals())

w = QtGui.QWidget()
l = QtGui.QHBoxLayout(w)


def wrapInVTitledItem(name, items):
  box = QtGui.QGroupBox(name)
  box.setAlignment(QtCore.Qt.AlignCenter) 
  boxLayout = QtGui.QVBoxLayout(box)
  for item in items:
    boxLayout.addWidget(item)
  return box
def wrapInHTitledItem(name, items):
예제 #43
0
from ddapp.consoleapp import ConsoleApp
from ddapp import lcmspy
from ddapp import lcmUtils
from ddapp import simpletimer as st

app = ConsoleApp()

app.setupGlobals(globals())

if app.getTestingInteractiveEnabled():
    app.showPythonConsole()


lcmspy.findLCMModulesInSysPath()

timer = st.SimpleTimer()
stats = {}

channelToMsg = {}
items = {}

def item(r, c):
    rowDict = items.setdefault(r, {})
    try:
        return rowDict[c]

    except KeyError:
        i = QtGui.QTableWidgetItem('')
        table.setItem(r, c, i)
        rowDict[c] = i
        return i
예제 #44
0
import ddapp
from ddapp.consoleapp import ConsoleApp
from ddapp import robotsystem
from ddapp import kinematicposeplanner as kpp


def onIkStartup(ikServer, startSuccess):
    kinematicPosePlanner.init()
    panel.testDemo()
    panel.ikServer.taskQueue.addTask(app.startTestingModeQuitTimer)


app = ConsoleApp()
app.setupGlobals(globals())

if app.getTestingInteractiveEnabled():
    app.showPythonConsole()

view = app.createView()
view.show()

robotsystem.create(view, globals())

ikServer.connectStartupCompleted(onIkStartup)
startIkServer()

kinematicPosePlanner = kpp.KinematicPosePlanner(ikServer)
panel = kpp.KinematicPosePlannerPanel(kinematicPosePlanner, ikServer, teleopJointController)

robotStateModel.setProperty('Visible', False)
teleopRobotModel.setProperty('Visible', True)
예제 #45
0
파일: yawLock.py 프로젝트: wxmerkt/director
        position, quat = transformUtils.poseFromTransform(pelvisToWorld)

        msg = lcmbot.pose_t()
        msg.utime = robotStateJointController.lastRobotStateMessage.utime
        msg.pos = [0.0, 0.0, 0.0]
        msg.orientation = quat.tolist()

        lcmUtils.publish(channel, msg)

    def enable(self):
        self.capture()
        self.timer.start()

    def disable(self):
        self.timer.stop()
        self.clear()


#---------------------------------------

app = ConsoleApp()
app.setupGlobals(globals())
app.showPythonConsole()
view = app.createView()
view.show()
robotsystem.create(view, globals())

estimator = FootLockEstimator()

app.start()
예제 #46
0
from ddapp.consoleapp import ConsoleApp
from ddapp import visualization as vis
from ddapp import roboturdf

app = ConsoleApp()
view = app.createView()

robotStateModel, robotStateJointController = roboturdf.loadRobotModel(
    'robot state model',
    view,
    parent='sensors',
    color=roboturdf.getRobotGrayColor(),
    visible=True)

robotStateModel.addToView(view)

if app.getTestingInteractiveEnabled():
    view.show()
    app.start()
class Simulator(object):
    def __init__(self,
                 percentObsDensity=20,
                 endTime=40,
                 randomizeControl=False,
                 nonRandomWorld=False,
                 circleRadius=0.7,
                 worldScale=1.0,
                 supervisedTrainingTime=500,
                 autoInitialize=True,
                 verbose=True,
                 sarsaType="discrete"):
        self.verbose = verbose
        self.randomizeControl = randomizeControl
        self.startSimTime = time.time()
        self.collisionThreshold = 1.3
        self.randomSeed = 5
        self.Sarsa_numInnerBins = 4
        self.Sarsa_numOuterBins = 4
        self.Sensor_rayLength = 8
        self.sarsaType = sarsaType

        self.percentObsDensity = percentObsDensity
        self.supervisedTrainingTime = 10
        self.learningRandomTime = 10
        self.learningEvalTime = 10
        self.defaultControllerTime = 10
        self.nonRandomWorld = nonRandomWorld
        self.circleRadius = circleRadius
        self.worldScale = worldScale
        # create the visualizer object
        self.app = ConsoleApp()
        # view = app.createView(useGrid=False)
        self.view = self.app.createView(useGrid=False)

        self.initializeOptions()
        self.initializeColorMap()
        if autoInitialize:
            self.initialize()

    def initializeOptions(self):
        self.options = dict()

        self.options['Reward'] = dict()
        self.options['Reward']['actionCost'] = 0.1
        self.options['Reward']['collisionPenalty'] = 100.0
        self.options['Reward']['raycastCost'] = 20.0

        self.options['SARSA'] = dict()
        self.options['SARSA']['type'] = "discrete"
        self.options['SARSA']['lam'] = 0.7
        self.options['SARSA']['alphaStepSize'] = 0.2
        self.options['SARSA']['useQLearningUpdate'] = False
        self.options['SARSA']['epsilonGreedy'] = 0.2
        self.options['SARSA']['burnInTime'] = 500
        self.options['SARSA']['epsilonGreedyExponent'] = 0.3
        self.options['SARSA'][
            'exponentialDiscountFactor'] = 0.05  #so gamma = e^(-rho*dt)
        self.options['SARSA']['numInnerBins'] = 5
        self.options['SARSA']['numOuterBins'] = 4
        self.options['SARSA']['binCutoff'] = 0.5

        self.options['World'] = dict()
        self.options['World']['obstaclesInnerFraction'] = 0.85
        self.options['World']['randomSeed'] = 40
        self.options['World']['percentObsDensity'] = 7.5
        self.options['World']['nonRandomWorld'] = True
        self.options['World']['circleRadius'] = 1.75
        self.options['World']['scale'] = 1.0

        self.options['Sensor'] = dict()
        self.options['Sensor']['rayLength'] = 10
        self.options['Sensor']['numRays'] = 20

        self.options['Car'] = dict()
        self.options['Car']['velocity'] = 12

        self.options['dt'] = 0.05

        self.options['runTime'] = dict()
        self.options['runTime']['supervisedTrainingTime'] = 10
        self.options['runTime']['learningRandomTime'] = 10
        self.options['runTime']['learningEvalTime'] = 10
        self.options['runTime']['defaultControllerTime'] = 10

    def setDefaultOptions(self):

        defaultOptions = dict()

        defaultOptions['Reward'] = dict()
        defaultOptions['Reward']['actionCost'] = 0.1
        defaultOptions['Reward']['collisionPenalty'] = 100.0
        defaultOptions['Reward']['raycastCost'] = 20.0

        defaultOptions['SARSA'] = dict()
        defaultOptions['SARSA']['type'] = "discrete"
        defaultOptions['SARSA']['lam'] = 0.7
        defaultOptions['SARSA']['alphaStepSize'] = 0.2
        defaultOptions['SARSA']['useQLearningUpdate'] = False
        defaultOptions['SARSA']['useSupervisedTraining'] = True
        defaultOptions['SARSA']['epsilonGreedy'] = 0.2
        defaultOptions['SARSA']['burnInTime'] = 500
        defaultOptions['SARSA']['epsilonGreedyExponent'] = 0.3
        defaultOptions['SARSA'][
            'exponentialDiscountFactor'] = 0.05  #so gamma = e^(-rho*dt)
        defaultOptions['SARSA']['numInnerBins'] = 5
        defaultOptions['SARSA']['numOuterBins'] = 4
        defaultOptions['SARSA']['binCutoff'] = 0.5
        defaultOptions['SARSA']['forceDriveStraight'] = True

        defaultOptions['World'] = dict()
        defaultOptions['World']['obstaclesInnerFraction'] = 0.85
        defaultOptions['World']['randomSeed'] = 40
        defaultOptions['World']['percentObsDensity'] = 7.5
        defaultOptions['World']['nonRandomWorld'] = True
        defaultOptions['World']['circleRadius'] = 1.75
        defaultOptions['World']['scale'] = 1.0

        defaultOptions['Sensor'] = dict()
        defaultOptions['Sensor']['rayLength'] = 10
        defaultOptions['Sensor']['numRays'] = 20

        defaultOptions['Car'] = dict()
        defaultOptions['Car']['velocity'] = 12

        defaultOptions['dt'] = 0.05

        defaultOptions['runTime'] = dict()
        defaultOptions['runTime']['supervisedTrainingTime'] = 10
        defaultOptions['runTime']['learningRandomTime'] = 10
        defaultOptions['runTime']['learningEvalTime'] = 10
        defaultOptions['runTime']['defaultControllerTime'] = 10

        for k in defaultOptions:
            self.options.setdefault(k, defaultOptions[k])

        for k in defaultOptions:
            if not isinstance(defaultOptions[k], dict):
                continue

            for j in defaultOptions[k]:
                self.options[k].setdefault(j, defaultOptions[k][j])

    def initializeColorMap(self):
        self.colorMap = dict()
        self.colorMap['defaultRandom'] = [0, 0, 1]
        self.colorMap['learnedRandom'] = [1.0, 0.54901961,
                                          0.]  # this is orange
        self.colorMap['learned'] = [0.58039216, 0.0,
                                    0.82745098]  # this is yellow
        self.colorMap['default'] = [0, 1, 0]

    def initialize(self):

        self.dt = self.options['dt']
        self.controllerTypeOrder = [
            'defaultRandom', 'learnedRandom', 'learned', 'default'
        ]

        self.setDefaultOptions()

        self.Sensor = SensorObj(rayLength=self.options['Sensor']['rayLength'],
                                numRays=self.options['Sensor']['numRays'])
        self.Controller = ControllerObj(self.Sensor)
        self.Car = CarPlant(controller=self.Controller,
                            velocity=self.options['Car']['velocity'])
        self.Reward = Reward(
            self.Sensor,
            collisionThreshold=self.collisionThreshold,
            actionCost=self.options['Reward']['actionCost'],
            collisionPenalty=self.options['Reward']['collisionPenalty'],
            raycastCost=self.options['Reward']['raycastCost'])
        self.setSARSA()

        # create the things needed for simulation
        om.removeFromObjectModel(om.findObjectByName('world'))
        self.world = World.buildCircleWorld(
            percentObsDensity=self.options['World']['percentObsDensity'],
            circleRadius=self.options['World']['circleRadius'],
            nonRandom=self.options['World']['nonRandomWorld'],
            scale=self.options['World']['scale'],
            randomSeed=self.options['World']['randomSeed'],
            obstaclesInnerFraction=self.options['World']
            ['obstaclesInnerFraction'])

        om.removeFromObjectModel(om.findObjectByName('robot'))
        self.robot, self.frame = World.buildRobot()
        self.locator = World.buildCellLocator(self.world.visObj.polyData)
        self.Sensor.setLocator(self.locator)
        self.frame = self.robot.getChildFrame()
        self.frame.setProperty('Scale', 3)
        self.frame.setProperty('Edit', True)
        self.frame.widget.HandleRotationEnabledOff()
        rep = self.frame.widget.GetRepresentation()
        rep.SetTranslateAxisEnabled(2, False)
        rep.SetRotateAxisEnabled(0, False)
        rep.SetRotateAxisEnabled(1, False)

        self.supervisedTrainingTime = self.options['runTime'][
            'supervisedTrainingTime']
        self.learningRandomTime = self.options['runTime']['learningRandomTime']
        self.learningEvalTime = self.options['runTime']['learningEvalTime']
        self.defaultControllerTime = self.options['runTime'][
            'defaultControllerTime']

        self.Car.setFrame(self.frame)
        print "Finished initialization"

    def setSARSA(self, type=None):
        if type is None:
            type = self.options['SARSA']['type']

        if type == "discrete":
            self.Sarsa = SARSADiscrete(
                sensorObj=self.Sensor,
                actionSet=self.Controller.actionSet,
                collisionThreshold=self.collisionThreshold,
                alphaStepSize=self.options['SARSA']['alphaStepSize'],
                useQLearningUpdate=self.options['SARSA']['useQLearningUpdate'],
                lam=self.options['SARSA']['lam'],
                numInnerBins=self.options['SARSA']['numInnerBins'],
                numOuterBins=self.options['SARSA']['numOuterBins'],
                binCutoff=self.options['SARSA']['binCutoff'],
                burnInTime=self.options['SARSA']['burnInTime'],
                epsilonGreedy=self.options['SARSA']['epsilonGreedy'],
                epsilonGreedyExponent=self.options['SARSA']
                ['epsilonGreedyExponent'],
                forceDriveStraight=self.options['SARSA']['forceDriveStraight'])
        elif type == "continuous":
            self.Sarsa = SARSAContinuous(
                sensorObj=self.Sensor,
                actionSet=self.Controller.actionSet,
                lam=self.options['SARSA']['lam'],
                alphaStepSize=self.options['SARSA']['alphaStepSize'],
                collisionThreshold=self.collisionThreshold,
                burnInTime=self.options['SARSA']['burnInTime'],
                epsilonGreedy=self.options['SARSA']['epsilonGreedy'],
                epsilonGreedyExponent=self.options['SARSA']
                ['epsilonGreedyExponent'])
        else:
            raise ValueError(
                "sarsa type must be either discrete or continuous")

    def runSingleSimulation(self,
                            updateQValues=True,
                            controllerType='default',
                            simulationCutoff=None):

        if self.verbose:
            print "using QValue based controller = ", useQValueController

        self.setCollisionFreeInitialState()

        currentCarState = np.copy(self.Car.state)
        nextCarState = np.copy(self.Car.state)
        self.setRobotFrameState(currentCarState[0], currentCarState[1],
                                currentCarState[2])
        currentRaycast = self.Sensor.raycastAll(self.frame)
        nextRaycast = np.zeros(self.Sensor.numRays)
        self.Sarsa.resetElibilityTraces()

        # record the reward data
        runData = dict()
        reward = 0
        discountedReward = 0
        avgReward = 0
        startIdx = self.counter

        while (self.counter < self.numTimesteps - 1):
            idx = self.counter
            currentTime = self.t[idx]
            self.stateOverTime[idx, :] = currentCarState
            x = self.stateOverTime[idx, 0]
            y = self.stateOverTime[idx, 1]
            theta = self.stateOverTime[idx, 2]
            self.setRobotFrameState(x, y, theta)
            # self.setRobotState(currentCarState[0], currentCarState[1], currentCarState[2])
            currentRaycast = self.Sensor.raycastAll(self.frame)
            self.raycastData[idx, :] = currentRaycast
            S_current = (currentCarState, currentRaycast)

            if controllerType not in self.colorMap.keys():
                print
                raise ValueError("controller of type " + controllerType +
                                 " not supported")

            if controllerType in ["default", "defaultRandom"]:
                if controllerType == "defaultRandom":
                    controlInput, controlInputIdx = self.Controller.computeControlInput(
                        currentCarState,
                        currentTime,
                        self.frame,
                        raycastDistance=currentRaycast,
                        randomize=True)
                else:
                    controlInput, controlInputIdx = self.Controller.computeControlInput(
                        currentCarState,
                        currentTime,
                        self.frame,
                        raycastDistance=currentRaycast,
                        randomize=False)

            if controllerType in ["learned", "learnedRandom"]:
                if controllerType == "learned":
                    randomizeControl = False
                else:
                    randomizeControl = True

                counterForGreedyDecay = self.counter - self.idxDict[
                    "learnedRandom"]
                controlInput, controlInputIdx, emptyQValue = self.Sarsa.computeGreedyControlPolicy(
                    S_current,
                    counter=counterForGreedyDecay,
                    randomize=randomizeControl)

                self.emptyQValue[idx] = emptyQValue
                if emptyQValue and self.options['SARSA'][
                        'useSupervisedTraining']:
                    controlInput, controlInputIdx = self.Controller.computeControlInput(
                        currentCarState,
                        currentTime,
                        self.frame,
                        raycastDistance=currentRaycast,
                        randomize=False)

            self.controlInputData[idx] = controlInput

            nextCarState = self.Car.simulateOneStep(controlInput=controlInput,
                                                    dt=self.dt)

            # want to compute nextRaycast so we can do the SARSA algorithm
            x = nextCarState[0]
            y = nextCarState[1]
            theta = nextCarState[2]
            self.setRobotFrameState(x, y, theta)
            nextRaycast = self.Sensor.raycastAll(self.frame)

            # Compute the next control input
            S_next = (nextCarState, nextRaycast)

            if controllerType in ["default", "defaultRandom"]:
                if controllerType == "defaultRandom":
                    nextControlInput, nextControlInputIdx = self.Controller.computeControlInput(
                        nextCarState,
                        currentTime,
                        self.frame,
                        raycastDistance=nextRaycast,
                        randomize=True)
                else:
                    nextControlInput, nextControlInputIdx = self.Controller.computeControlInput(
                        nextCarState,
                        currentTime,
                        self.frame,
                        raycastDistance=nextRaycast,
                        randomize=False)

            if controllerType in ["learned", "learnedRandom"]:
                if controllerType == "learned":
                    randomizeControl = False
                else:
                    randomizeControl = True

                counterForGreedyDecay = self.counter - self.idxDict[
                    "learnedRandom"]
                nextControlInput, nextControlInputIdx, emptyQValue = self.Sarsa.computeGreedyControlPolicy(
                    S_next,
                    counter=counterForGreedyDecay,
                    randomize=randomizeControl)

                if emptyQValue and self.options['SARSA'][
                        'useSupervisedTraining']:
                    nextControlInput, nextControlInputIdx = self.Controller.computeControlInput(
                        nextCarState,
                        currentTime,
                        self.frame,
                        raycastDistance=nextRaycast,
                        randomize=False)

            # if useQValueController:
            #     nextControlInput, nextControlInputIdx, emptyQValue = self.Sarsa.computeGreedyControlPolicy(S_next)
            #
            # if not useQValueController or emptyQValue:
            #     nextControlInput, nextControlInputIdx = self.Controller.computeControlInput(nextCarState, currentTime, self.frame,
            #                                                                             raycastDistance=nextRaycast)

            # compute the reward
            reward = self.Reward.computeReward(S_next, controlInput)
            self.rewardData[idx] = reward

            discountedReward += self.Sarsa.gamma**(self.counter -
                                                   startIdx) * reward
            avgReward += reward

            ###### SARSA update
            if updateQValues:
                self.Sarsa.sarsaUpdate(S_current, controlInputIdx, reward,
                                       S_next, nextControlInputIdx)

            #bookkeeping
            currentCarState = nextCarState
            currentRaycast = nextRaycast
            self.counter += 1
            # break if we are in collision
            if self.checkInCollision(nextRaycast):
                if self.verbose:
                    print "Had a collision, terminating simulation"
                break

            if self.counter >= simulationCutoff:
                break

        # fill in the last state by hand
        self.stateOverTime[self.counter, :] = currentCarState
        self.raycastData[self.counter, :] = currentRaycast

        # return the total reward
        avgRewardNoCollisionPenalty = avgReward - reward
        avgReward = avgReward * 1.0 / max(1, self.counter - startIdx)
        avgRewardNoCollisionPenalty = avgRewardNoCollisionPenalty * 1.0 / max(
            1, self.counter - startIdx)
        # this extra multiplication is so that it is in the same "units" as avgReward
        runData['discountedReward'] = discountedReward * (1 - self.Sarsa.gamma)
        runData['avgReward'] = avgReward
        runData['avgRewardNoCollisionPenalty'] = avgRewardNoCollisionPenalty

        # this just makes sure we don't get stuck in an infinite loop.
        if startIdx == self.counter:
            self.counter += 1

        return runData

    def setNumpyRandomSeed(self, seed=1):
        np.random.seed(seed)

    def runBatchSimulation(self, endTime=None, dt=0.05):

        # for use in playback
        self.dt = self.options['dt']
        self.Sarsa.setDiscountFactor(dt)

        self.endTime = self.supervisedTrainingTime + self.learningRandomTime + self.learningEvalTime + self.defaultControllerTime

        self.t = np.arange(0.0, self.endTime, dt)
        maxNumTimesteps = np.size(self.t)
        self.stateOverTime = np.zeros((maxNumTimesteps + 1, 3))
        self.raycastData = np.zeros((maxNumTimesteps + 1, self.Sensor.numRays))
        self.controlInputData = np.zeros(maxNumTimesteps + 1)
        self.rewardData = np.zeros(maxNumTimesteps + 1)
        self.emptyQValue = np.zeros(maxNumTimesteps + 1, dtype='bool')
        self.numTimesteps = maxNumTimesteps

        self.controllerTypeOrder = [
            'defaultRandom', 'learnedRandom', 'learned', 'default'
        ]
        self.counter = 0
        self.simulationData = []

        self.initializeStatusBar()

        self.idxDict = dict()
        numRunsCounter = 0

        # three while loops for different phases of simulation, supervisedTraining, learning, default
        self.idxDict['defaultRandom'] = self.counter
        loopStartIdx = self.counter
        simCutoff = min(loopStartIdx + self.supervisedTrainingTime / dt,
                        self.numTimesteps)
        while ((self.counter - loopStartIdx < self.supervisedTrainingTime / dt)
               and self.counter < self.numTimesteps):
            self.printStatusBar()
            useQValueController = False
            startIdx = self.counter
            runData = self.runSingleSimulation(updateQValues=True,
                                               controllerType='defaultRandom',
                                               simulationCutoff=simCutoff)

            runData['startIdx'] = startIdx
            runData['controllerType'] = "defaultRandom"
            runData['duration'] = self.counter - runData['startIdx']
            runData['endIdx'] = self.counter
            runData['runNumber'] = numRunsCounter
            numRunsCounter += 1
            self.simulationData.append(runData)

        self.idxDict['learnedRandom'] = self.counter
        loopStartIdx = self.counter
        simCutoff = min(loopStartIdx + self.learningRandomTime / dt,
                        self.numTimesteps)
        while ((self.counter - loopStartIdx < self.learningRandomTime / dt)
               and self.counter < self.numTimesteps):
            self.printStatusBar()
            startIdx = self.counter
            runData = self.runSingleSimulation(updateQValues=True,
                                               controllerType='learnedRandom',
                                               simulationCutoff=simCutoff)
            runData['startIdx'] = startIdx
            runData['controllerType'] = "learnedRandom"
            runData['duration'] = self.counter - runData['startIdx']
            runData['endIdx'] = self.counter
            runData['runNumber'] = numRunsCounter
            numRunsCounter += 1
            self.simulationData.append(runData)

        self.idxDict['learned'] = self.counter
        loopStartIdx = self.counter
        simCutoff = min(loopStartIdx + self.learningEvalTime / dt,
                        self.numTimesteps)
        while ((self.counter - loopStartIdx < self.learningEvalTime / dt)
               and self.counter < self.numTimesteps):

            self.printStatusBar()
            startIdx = self.counter
            runData = self.runSingleSimulation(updateQValues=False,
                                               controllerType='learned',
                                               simulationCutoff=simCutoff)
            runData['startIdx'] = startIdx
            runData['controllerType'] = "learned"
            runData['duration'] = self.counter - runData['startIdx']
            runData['endIdx'] = self.counter
            runData['runNumber'] = numRunsCounter
            numRunsCounter += 1
            self.simulationData.append(runData)

        self.idxDict['default'] = self.counter
        loopStartIdx = self.counter
        simCutoff = min(loopStartIdx + self.defaultControllerTime / dt,
                        self.numTimesteps)
        while ((self.counter - loopStartIdx < self.defaultControllerTime / dt)
               and self.counter < self.numTimesteps - 1):
            self.printStatusBar()
            startIdx = self.counter
            runData = self.runSingleSimulation(updateQValues=False,
                                               controllerType='default',
                                               simulationCutoff=simCutoff)
            runData['startIdx'] = startIdx
            runData['controllerType'] = "default"
            runData['duration'] = self.counter - runData['startIdx']
            runData['endIdx'] = self.counter
            runData['runNumber'] = numRunsCounter
            numRunsCounter += 1
            self.simulationData.append(runData)

        # BOOKKEEPING
        # truncate stateOverTime, raycastData, controlInputs to be the correct size
        self.numTimesteps = self.counter + 1
        self.stateOverTime = self.stateOverTime[0:self.counter + 1, :]
        self.raycastData = self.raycastData[0:self.counter + 1, :]
        self.controlInputData = self.controlInputData[0:self.counter + 1]
        self.rewardData = self.rewardData[0:self.counter + 1]
        self.endTime = 1.0 * self.counter / self.numTimesteps * self.endTime

    def initializeStatusBar(self):
        self.numTicks = 10
        self.nextTickComplete = 1.0 / float(self.numTicks)
        self.nextTickIdx = 1
        print "Simulation percentage complete: (", self.numTicks, " # is complete)"

    def printStatusBar(self):
        fractionDone = float(self.counter) / float(self.numTimesteps)
        if fractionDone > self.nextTickComplete:

            self.nextTickIdx += 1
            self.nextTickComplete += 1.0 / self.numTicks

            timeSoFar = time.time() - self.startSimTime
            estimatedTimeLeft_sec = (1 -
                                     fractionDone) * timeSoFar / fractionDone
            estimatedTimeLeft_minutes = estimatedTimeLeft_sec / 60.0

            print "#" * self.nextTickIdx, "-" * (
                self.numTicks - self.nextTickIdx
            ), "estimated", estimatedTimeLeft_minutes, "minutes left"

    def setCollisionFreeInitialState(self):
        tol = 5

        while True:
            x = np.random.uniform(self.world.Xmin + tol, self.world.Xmax - tol,
                                  1)[0]
            y = np.random.uniform(self.world.Ymin + tol, self.world.Ymax - tol,
                                  1)[0]
            theta = np.random.uniform(0, 2 * np.pi, 1)[0]
            self.Car.setCarState(x, y, theta)
            self.setRobotFrameState(x, y, theta)

            if not self.checkInCollision():
                break

        # if self.checkInCollision():
        #     print "IN COLLISION"
        # else:
        #     print "COLLISION FREE"

        return x, y, theta

    def setupPlayback(self):

        self.timer = TimerCallback(targetFps=30)
        self.timer.callback = self.tick

        playButtonFps = 1.0 / self.dt
        print "playButtonFPS", playButtonFps
        self.playTimer = TimerCallback(targetFps=playButtonFps)
        self.playTimer.callback = self.playTimerCallback
        self.sliderMovedByPlayTimer = False

        panel = QtGui.QWidget()
        l = QtGui.QHBoxLayout(panel)

        playButton = QtGui.QPushButton('Play/Pause')
        playButton.connect('clicked()', self.onPlayButton)

        slider = QtGui.QSlider(QtCore.Qt.Horizontal)
        slider.connect('valueChanged(int)', self.onSliderChanged)
        self.sliderMax = self.numTimesteps
        slider.setMaximum(self.sliderMax)
        self.slider = slider

        l.addWidget(playButton)
        l.addWidget(slider)

        w = QtGui.QWidget()
        l = QtGui.QVBoxLayout(w)
        l.addWidget(self.view)
        l.addWidget(panel)
        w.showMaximized()

        self.frame.connectFrameModified(self.updateDrawIntersection)
        self.updateDrawIntersection(self.frame)

        applogic.resetCamera(viewDirection=[0.2, 0, -1])
        self.view.showMaximized()
        self.view.raise_()
        panel = screengrabberpanel.ScreenGrabberPanel(self.view)
        panel.widget.show()

        elapsed = time.time() - self.startSimTime
        simRate = self.counter / elapsed
        print "Total run time", elapsed
        print "Ticks (Hz)", simRate
        print "Number of steps taken", self.counter
        self.app.start()

    def run(self, launchApp=True):
        self.counter = 1
        self.runBatchSimulation()
        # self.Sarsa.plotWeights()

        if launchApp:
            self.setupPlayback()

    def updateDrawIntersection(self, frame):

        origin = np.array(frame.transform.GetPosition())
        #print "origin is now at", origin
        d = DebugData()

        sliderIdx = self.slider.value

        controllerType = self.getControllerTypeFromCounter(sliderIdx)
        colorMaxRange = self.colorMap[controllerType]

        # if the QValue was empty then color it green
        if self.emptyQValue[sliderIdx]:
            colorMaxRange = [1, 1, 0]  # this is yellow

        for i in xrange(self.Sensor.numRays):
            ray = self.Sensor.rays[:, i]
            rayTransformed = np.array(frame.transform.TransformNormal(ray))
            #print "rayTransformed is", rayTransformed
            intersection = self.Sensor.raycast(
                self.locator, origin,
                origin + rayTransformed * self.Sensor.rayLength)

            if intersection is not None:
                d.addLine(origin, intersection, color=[1, 0, 0])
            else:
                d.addLine(origin,
                          origin + rayTransformed * self.Sensor.rayLength,
                          color=colorMaxRange)

        vis.updatePolyData(d.getPolyData(), 'rays', colorByName='RGB255')

        #camera = self.view.camera()
        #camera.SetFocalPoint(frame.transform.GetPosition())
        #camera.SetPosition(frame.transform.TransformPoint((-30,0,10)))

    def getControllerTypeFromCounter(self, counter):
        name = self.controllerTypeOrder[0]

        for controllerType in self.controllerTypeOrder[1:]:
            if counter >= self.idxDict[controllerType]:
                name = controllerType

        return name

    def setRobotFrameState(self, x, y, theta):
        t = vtk.vtkTransform()
        t.Translate(x, y, 0.0)
        t.RotateZ(np.degrees(theta))
        self.robot.getChildFrame().copyFrame(t)

    # returns true if we are in collision
    def checkInCollision(self, raycastDistance=None):
        if raycastDistance is None:
            self.setRobotFrameState(self.Car.state[0], self.Car.state[1],
                                    self.Car.state[2])
            raycastDistance = self.Sensor.raycastAll(self.frame)

        if np.min(raycastDistance) < self.collisionThreshold:
            return True
        else:
            return False

    def tick(self):
        #print timer.elapsed
        #simulate(t.elapsed)
        x = np.sin(time.time())
        y = np.cos(time.time())
        self.setRobotFrameState(x, y, 0.0)
        if (time.time() - self.playTime) > self.endTime:
            self.playTimer.stop()

    def tick2(self):
        newtime = time.time() - self.playTime
        print time.time() - self.playTime
        x = np.sin(newtime)
        y = np.cos(newtime)
        self.setRobotFrameState(x, y, 0.0)

    # just increment the slider, stop the timer if we get to the end
    def playTimerCallback(self):
        self.sliderMovedByPlayTimer = True
        currentIdx = self.slider.value
        nextIdx = currentIdx + 1
        self.slider.setSliderPosition(nextIdx)
        if currentIdx >= self.sliderMax:
            print "reached end of tape, stopping playTime"
            self.playTimer.stop()

    def onSliderChanged(self, value):
        if not self.sliderMovedByPlayTimer:
            self.playTimer.stop()
        numSteps = len(self.stateOverTime)
        idx = int(np.floor(numSteps * (1.0 * value / self.sliderMax)))
        idx = min(idx, numSteps - 1)
        x, y, theta = self.stateOverTime[idx]
        self.setRobotFrameState(x, y, theta)
        self.sliderMovedByPlayTimer = False

    def onPlayButton(self):

        if self.playTimer.isActive():
            self.onPauseButton()
            return

        print 'play'
        self.playTimer.start()
        self.playTime = time.time()

    def onPauseButton(self):
        print 'pause'
        self.playTimer.stop()

    def computeRunStatistics(self):
        numRuns = len(self.simulationData)
        runStart = np.zeros(numRuns)
        runDuration = np.zeros(numRuns)
        grid = np.arange(1, numRuns + 1)
        discountedReward = np.zeros(numRuns)
        avgReward = np.zeros(numRuns)
        avgRewardNoCollisionPenalty = np.zeros(numRuns)

        idxMap = dict()

        for controllerType, color in self.colorMap.iteritems():
            idxMap[controllerType] = np.zeros(numRuns, dtype=bool)

        for idx, val in enumerate(self.simulationData):
            runStart[idx] = val['startIdx']
            runDuration[idx] = val['duration']
            discountedReward[idx] = val['discountedReward']
            avgReward[idx] = val['avgReward']
            avgRewardNoCollisionPenalty[idx] = val[
                'avgRewardNoCollisionPenalty']
            controllerType = val['controllerType']
            idxMap[controllerType][idx] = True

    def plotRunData(self,
                    controllerTypeToPlot=None,
                    showPlot=True,
                    onlyLearned=False):

        if controllerTypeToPlot == None:
            controllerTypeToPlot = self.colorMap.keys()

        if onlyLearned:
            controllerTypeToPlot = ['learnedRandom', 'learned']

        numRuns = len(self.simulationData)
        runStart = np.zeros(numRuns)
        runDuration = np.zeros(numRuns)
        grid = np.arange(1, numRuns + 1)
        discountedReward = np.zeros(numRuns)
        avgReward = np.zeros(numRuns)
        avgRewardNoCollisionPenalty = np.zeros(numRuns)

        idxMap = dict()

        for controllerType, color in self.colorMap.iteritems():
            idxMap[controllerType] = np.zeros(numRuns, dtype=bool)

        for idx, val in enumerate(self.simulationData):
            runStart[idx] = val['startIdx']
            runDuration[idx] = val['duration']
            discountedReward[idx] = val['discountedReward']
            avgReward[idx] = val['avgReward']
            avgRewardNoCollisionPenalty[idx] = val[
                'avgRewardNoCollisionPenalty']
            controllerType = val['controllerType']
            idxMap[controllerType][idx] = True

            # usedQValueController[idx] = (val['controllerType'] == "QValue")
            # usedDefaultController[idx] = (val['controllerType'] == "default")
            # usedDefaultRandomController[idx] = (val['controllerType'] == "defaultRandom")
            # usedQValueRandomController[idx] = (val['controllerType'] == "QValueRandom")

        self.runStatistics = dict()
        dataMap = {
            'duration': runDuration,
            'discountedReward': discountedReward,
            'avgReward': avgReward,
            'avgRewardNoCollisionPenalty': avgRewardNoCollisionPenalty
        }

        def computeRunStatistics(dataMap):
            for controllerType, idx in idxMap.iteritems():
                d = dict()
                for dataName, dataSet in dataMap.iteritems():
                    # average the appropriate values in dataset
                    d[dataName] = np.sum(
                        dataSet[idx]) / (1.0 * np.size(dataSet[idx]))

                self.runStatistics[controllerType] = d

        computeRunStatistics(dataMap)

        if not showPlot:
            return

        plt.figure()

        #
        # idxDefaultRandom = np.where(usedDefaultRandomController==True)[0]
        # idxQValueController = np.where(usedQValueController==True)[0]
        # idxQValueControllerRandom = np.where(usedQValueControllerRandom==True)[0]
        # idxDefault = np.where(usedDefaultController==True)[0]
        #
        # plotData = dict()
        # plotData['defaultRandom'] = {'idx': idxDefaultRandom, 'color': 'b'}
        # plotData['QValue'] = {'idx': idxQValueController, 'color': 'y'}
        # plotData['default'] = {'idx': idxDefault, 'color': 'g'}

        def scatterPlot(dataToPlot):
            for controllerType in controllerTypeToPlot:
                idx = idxMap[controllerType]
                plt.scatter(grid[idx],
                            dataToPlot[idx],
                            color=self.colorMap[controllerType])

        def barPlot(dataName):
            plt.title(dataName)
            barWidth = 0.5
            barCounter = 0
            index = np.arange(len(controllerTypeToPlot))

            for controllerType in controllerTypeToPlot:
                val = self.runStatistics[controllerType]
                plt.bar(barCounter,
                        val[dataName],
                        barWidth,
                        color=self.colorMap[controllerType],
                        label=controllerType)
                barCounter += 1

            plt.xticks(index + barWidth / 2.0, controllerTypeToPlot)

        plt.subplot(4, 1, 1)
        plt.title('run duration')
        scatterPlot(runDuration)
        # for controllerType, idx in idxMap.iteritems():
        #     plt.scatter(grid[idx], runDuration[idx], color=self.colorMap[controllerType])

        # plt.scatter(runStart[idxDefaultRandom], runDuration[idxDefaultRandom], color='b')
        # plt.scatter(runStart[idxQValueController], runDuration[idxQValueController], color='y')
        # plt.scatter(runStart[idxDefault], runDuration[idxDefault], color='g')
        plt.xlabel('run #')
        plt.ylabel('episode duration')

        plt.subplot(2, 1, 2)
        plt.title('discounted reward')
        scatterPlot(discountedReward)
        # for key, val in plotData.iteritems():
        #     plt.scatter(grid[idx], discountedReward[idx], color=self.colorMap[controllerType])

        # plt.subplot(3,1,3)
        # plt.title("average reward")
        # scatterPlot(avgReward)
        # for key, val in plotData.iteritems():
        #     plt.scatter(grid[val['idx']],avgReward[val['idx']], color=val['color'])

        # plt.subplot(4,1,4)
        # plt.title("average reward no collision penalty")
        # scatterPlot(avgRewardNoCollisionPenalty)
        # # for key, val in plotData.iteritems():
        # #     plt.scatter(grid[val['idx']],avgRewardNoCollisionPenalty[val['idx']], color=val['color'])

        ## plot summary statistics
        plt.figure()

        plt.subplot(2, 1, 1)
        barPlot("duration")

        plt.subplot(2, 1, 2)
        barPlot("discountedReward")

        # plt.subplot(3,1,3)
        # barPlot("avgReward")
        #
        # plt.subplot(4,1,4)
        # barPlot("avgRewardNoCollisionPenalty")

        plt.show()

    def plotMultipleRunData(self,
                            simList,
                            toPlot=['duration', 'discountedReward'],
                            controllerType='learned'):

        plt.figure()
        numPlots = len(toPlot)

        grid = np.arange(len(simList))

        def plot(fieldToPlot, plotNum):
            plt.subplot(numPlots, 1, plotNum)
            plt.title(fieldToPlot)
            val = 0 * grid
            barWidth = 0.5
            barCounter = 0
            for idx, sim in enumerate(simList):
                value = sim.runStatistics[controllerType][fieldToPlot]
                plt.bar(idx, value, barWidth)

        counter = 1
        for fieldToPlot in toPlot:
            plot(fieldToPlot, counter)
            counter += 1

        plt.show()

    def saveToFile(self, filename):

        # should also save the run data if it is available, i.e. stateOverTime, rewardOverTime

        filename = 'data/' + filename + ".out"
        my_shelf = shelve.open(filename, 'n')

        my_shelf['options'] = self.options

        if self.options['SARSA']['type'] == "discrete":
            my_shelf['SARSA_QValues'] = self.Sarsa.QValues

        my_shelf['simulationData'] = self.simulationData
        my_shelf['stateOverTime'] = self.stateOverTime
        my_shelf['raycastData'] = self.raycastData
        my_shelf['controlInputData'] = self.controlInputData
        my_shelf['emptyQValue'] = self.emptyQValue
        my_shelf['numTimesteps'] = self.numTimesteps
        my_shelf['idxDict'] = self.idxDict
        my_shelf['counter'] = self.counter
        my_shelf.close()

    @staticmethod
    def loadFromFile(filename):
        filename = 'data/' + filename + ".out"
        sim = Simulator(autoInitialize=False, verbose=False)

        my_shelf = shelve.open(filename)
        sim.options = my_shelf['options']
        sim.initialize()

        if sim.options['SARSA']['type'] == "discrete":
            sim.Sarsa.QValues = np.array(my_shelf['SARSA_QValues'])

        sim.simulationData = my_shelf['simulationData']
        # sim.runStatistics = my_shelf['runStatistics']
        sim.stateOverTime = np.array(my_shelf['stateOverTime'])
        sim.raycastData = np.array(my_shelf['raycastData'])
        sim.controlInputData = np.array(my_shelf['controlInputData'])
        sim.emptyQValue = np.array(my_shelf['emptyQValue'])
        sim.numTimesteps = my_shelf['numTimesteps']
        sim.idxDict = my_shelf['idxDict']
        sim.counter = my_shelf['counter']

        my_shelf.close()

        return sim
예제 #48
0
    return poses


def testPlanConstraints():

    # this is required for now, makes it avoid communication with matlab
    # inside the call to ikPlanner.addPose
    ikPlanner.pushToMatlab = False

    constraints = buildConstraints()
    poses = getPlanPoses(constraints)

    poseJsonStr = json.dumps(poses, indent=4)
    constraintsJsonStr = encode(constraints, indent=4)

    print poseJsonStr
    print constraintsJsonStr

    #pprint.pprint(constraints)


app = ConsoleApp()
app.setupGlobals(globals())

view = app.createView()
robotsystem.create(view, globals())

testPlanConstraints()

#app.start()
예제 #49
0
def main():

    atlasdriver.init()
    panel = atlasdriverpanel.AtlasDriverPanel(atlasdriver.driver)
    panel.widget.show()
    ConsoleApp.start()
예제 #50
0
    assert not checkGraspFrame(goalFrame, side)
    frame = teleopPanel.endEffectorTeleop.newReachTeleop(goalFrame, side)
    assert checkGraspFrame(goalFrame, side)

    teleopPanel.ui.planButton.click()
    assert playbackPanel.plan is not None

    teleopPanel.ikPlanner.useCollision = True;
    teleopPanel.ui.planButton.click()
    assert playbackPanel.plan is not None

    frame.setProperty('Edit', True)
    app.startTestingModeQuitTimer()


app = ConsoleApp()
app.setupGlobals(globals())

view = app.createView()
robotsystem.create(view, globals())


playbackPanel = playbackpanel.PlaybackPanel(planPlayback, playbackRobotModel, playbackJointController,
                                  robotStateModel, robotStateJointController, manipPlanner)

teleopPanel = teleoppanel.TeleopPanel(robotStateModel, robotStateJointController, teleopRobotModel, teleopJointController,
                 ikPlanner, manipPlanner, affordanceManager, playbackPanel.setPlan, playbackPanel.hidePlan)

manipPlanner.connectPlanReceived(playbackPanel.setPlan)