def handle_predict(argv): hypothesis = None model = None with open(argv[3], "r") as f: # DONT DO THIS ITS INSECURE. IM INSANE model = f.readline().strip('\n') hypothesis = f.readline() f.close() hypothesis = literal_eval(hypothesis) tree = None tree = DecisionTree() tree.define_positive_class(lambda x: x.classification == 'en') tree.define_classes(processing.classes) tree.define_attributes(processing.attr_definitions) examples = process_file(argv[4], training=False) examples = tree.create_examples(examples) return tree.classify(examples, hypothesis)
def handle_predict(argv): hypothesis = None model = None with open(argv[2], "r") as f: model = f.readline().strip('\n') hypothesis = f.readline() f.close() hypothesis = literal_eval(hypothesis) tree = None if model == "dt": tree = DecisionTree() else: tree = Adaboost() tree.define_positive_class(lambda x: x.classification == 'en') tree.define_classes(processing.classes) tree.define_attributes(processing.attr_definitions) examples = process_file(argv[3], training=False) examples = tree.create_examples(examples) for classification in tree.classify(examples, hypothesis): print(classification)