def ETT_data_get(name, dir_placement=None, force_download=False, split_data=True, include_time_in_u=False, full_return=False): url = name file_name = url.split('/')[-1] download_size = None save_dir = cashed_download(url,'beihang', dir_placement=dir_placement,\ download_size=download_size,force_download=force_download,zipped=False) file_loc = os.path.join(save_dir, file_name) ETT, target, loads, times, time = load_cor(file_loc) if full_return: return ETT, target, loads, times, time u = loads if include_time_in_u: u = np.concatenate([u, times], axis=1) y = target sys_data = System_data(u=u, y=y, dt=15 / 60 / 24) return sys_data.train_test_split(split_fraction=4 / 20) if split_data else sys_data
def EMPS(dir_placement=None, vir_as_u=True, force_download=False, split_data=True): '''The Electro-Mechanical Positioning System is a standard configuration of a drive system for prismatic joint of robots or machine tools. The main source of nonlinearity is caused by friction effects that are present in the setup. Due to the presence of a pure integrator in the system, the measurements are obtained in a closed-loop setting. The provided data is described in this link. The provided Electro-Mechanical Positioning System datasets are available for download here. This zip-file contains the system description and available data sets .mat file format. Please refer to the Electro-Mechanical Positioning System as: A. Janot, M. Gautier and M. Brunot, Data Set and Reference Models of EMPS, 2019 Workshop on Nonlinear System Identification Benchmarks, Eindhoven, The Netherlands, April 10-12, 2019. Special thanks to Alexandre Janot for making this dataset available.''' #q_cur current measured position #q_ref target/reference potion #non-linear due to singed friction force Fc ~ sing(dq/dt) #t time #vir applied the vector of motor force expressed in the load side i.e. in N; # url = 'http://www.nonlinearbenchmark.org/FILES/BENCHMARKS/EMPS/EMPS.zip' url = 'https://drive.google.com/file/d/1zwoXYa9-3f8NQ0ohzmjpF7UxbNgRTHkS/view' download_size = 1949929 save_dir = cashed_download(url, 'EMPS', zip_name='EMPS.zip', dir_placement=dir_placement, download_size=download_size, force_download=force_download) matfile = loadmat(os.path.join(save_dir, 'DATA_EMPS.mat')) q_cur, q_ref, t, vir = [ matfile[a][:, 0] for a in ['qm', 'qg', 't', 'vir'] ] #qg is reference, either, q_ref is input or vir is input out_data = System_data(u=vir, y=q_cur) if vir_as_u else System_data( u=q_ref, y=q_cur) return out_data.train_test_split() if split_data else out_data
def flexible_structure(dir_placement=None, force_download=False, split_data=True): '''Contributed by: Maher ABDELGHANI IRISA-INRIA Campus de Beaulieu 35042 Rennes cedex FRANCE [email protected] Description: Experiment on a Steel Subframe Flexible structure performed at LMS-International, Leuven-Belgium. -Structure suspended with flexible rubber bands. -2 shakers at 2 locations were used for force input signals. - 28 accelerometers around the structure were used for measurements. - The 30 channels were simulataneously measured using the LMS-CadaX Data Acquisition Module. Sampling: 1/1024 (s) Number: 8523 samples/channel Inputs: 2 inputs: u1= White noise Force u2=White noise force. Outputs: 28 outputs: Accelerations References: 1. M.Abdelghani, M.Basseville, A.Benvensite,"In-Operation Damage Monitoring and Diagnosis of Vibrating Structures, with Application to Offshore Structures and Rotating Machinery", IMAC-XV Feb.3-6 1997, Fl. USA. 2. M.Abdelghani, C.T.Chou, M. Verhaegen, "Using Subspace Methods for the Identification and Modal Analysis of Structures", IMAC-XV, Feb.3-6 1997, Fl.USA. Properties: Frequency Range: 10-512 Hz. Columns: colomn1= input1 (u1) colomn2=input2 (u2) colomns3--30: outputs1--28 Category: Mechanical Structure ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/mechanical/flexible_structure.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 0], y=data[:, 1]) return data.train_test_split() if split_data else data
def steamgen(dir_placement=None, force_download=False, split_data=True): '''Contributed by: Jairo Espinosa ESAT-SISTA KULEUVEN Kardinaal Mercierlaan 94 B-3001 Heverlee Belgium [email protected] Description: The data comes from a model of a Steam Generator at Abbott Power Plant in Champaign IL. The model is described in the paper of Pellegrineti [1]. Sampling: 3 sec Number: 9600 Inputs: u1: Fuel scaled 0-1 u2: Air scaled 0-1 u3: Reference level inches u4: Disturbance defined by the load level Outputs: y1: Drum pressure PSI y2: Excess Oxygen in exhaust gases % y3: Level of water in the drum y4: Steam Flow Kg./s References: [1] G. Pellegrinetti and J. Benstman, Nonlinear Control Oriented Boiler Modeling -A Benchamrk Problem for Controller Design, IEEE Tran. Control Systems Tech. Vol.4No.1 Jan.1996 [2] J. Espinosa and J. Vandewalle Predictive Control Using Fuzzy Models Applied to a Steam Generating Unit, Submitted to FLINS 98 3rd. International Workshop on Fuzzy Logic Systems and Intelligent Technologies for Nuclear Science and Industry Properties: To make possible the open loop identification the wter level was stabilized by appliying to the water flow input a feedforward action proportional to the steam flow with value 0.0403 and a PI action with values Kp=0.258 Ti=1.1026e-4 the reference of this controller is the input u3. Columns: Column 1: time-steps Column 2: input fuel Column 3: input air Column 4: input level ref. Column 5: input disturbance Column 6: output drum pressure Column 7: output excess oxygen Column 8: output water level Column 9: output steam flow Category: Process industry systems Where: ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/espinosa/datasets/powplant.dat ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/process_industry/steamgen.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 1:5], y=data[:, 5:]) return data.train_test_split() if split_data else data
def internet_traffic(dir_placement=None, force_download=False, split_data=True): '''Contributed by: Katrien De C**k K.U.Leuven, ESAT-SISTA Kardinaal Mercierlaan 94 3001 Heverlee [email protected] Description: one hour of internet traffic between the Lawrence Berkeley Laboratory and the rest of the world Sampling: Number: 99999 Inputs: Output: number of packets per time unit References: Katrien De C**k and Bart De Moor, Identification of the first order parameters of a circulant modulated Poisson process. Accepted for publication in the proceedings of the International Conference on Telecommunication (ICT '98) V. Paxson and S. Floyd, Wide-area traffic: The failure of Poisson modeling, IEEE/ACM Transactions on Networking, 1995 Properties: Columns: Column 1: time-steps Column 2: output y Category: Time series ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/timeseries/internet_traffic.dat.gz' dir_name = 'DaISy_data' save_dir = cashed_download(url, dir_name, dir_placement=dir_placement, download_size=None, force_download=force_download) file = os.path.join(save_dir, url.split('/')[-1][:-3]) with open(file) as f: splitted = '\n'.join(f.read().split('\n')[:-5]) #weird shit with tempfile.TemporaryFile() as fp: fp.write(bytes(splitted, 'utf-8')) fp.seek(0) data = np.loadtxt(fp) data = System_data(u=None, y=data[:, 1]) return data.train_test_split() if split_data else data
def powerplant(dir_placement=None, force_download=False, split_data=True): '''This file describes the data in the powerplant.dat file. 1. Contributed by: Peter Van Overschee K.U.Leuven - ESAT - SISTA K. Mercierlaan 94 3001 Heverlee [email protected] 2. Process/Description: data of a power plant (Pont-sur-Sambre (France)) of 120 MW 3. Sampling time 1228.8 sec 4. Number of samples: 200 samples 5. Inputs: 1. gas flow 2. turbine valves opening 3. super heater spray flow 4. gas dampers 5. air flow 6. Outputs: 1. steam pressure 2. main stem temperature 3. reheat steam temperature 7. References: a. R.P. Guidorzi, P. Rossi, Identification of a power plant from normal operating records. Automatic control theory and applications (Canada, Vol 2, pp 63-67, sept 1974. b. Moonen M., De Moor B., Vandenberghe L., Vandewalle J., On- and off-line identification of linear state-space models, International Journal of Control, Vol. 49, Jan. 1989, pp.219-232 8. Known properties/peculiarities 9. Some MATLAB-code to retrieve the data !gunzip powerplant.dat.Z load powerplant.dat U=powerplant(:,1:5); Y=powerplant(:,6:8); Yr=powerplant(:,9:11); ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/process_industry/powerplant.dat.gz' powerplant = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) U = powerplant[:, 0:5] Y = powerplant[:, 5:8] Yr = powerplant[:, 8:11] data = System_data(u=U, y=Y) return data.train_test_split() if split_data else data
def pHdata(dir_placement=None, force_download=False, split_data=True): '''Contributed by: Jairo Espinosa K.U.Leuven ESAT-SISTA K.Mercierlaan 94 B3001 Heverlee [email protected] Description: Simulation data of a pH neutralization process in a constant volume stirring tank. Volume of the tank 1100 liters Concentration of the acid solution (HAC) 0.0032 Mol/l Concentration of the base solution (NaOH) 0,05 Mol/l Sampling: 10 sec Number: 2001 Inputs: u1: Acid solution flow in liters u2: Base solution flow in liters Outputs: y: pH of the solution in the tank References: T.J. Mc Avoy, E.Hsu and S.Lowenthal, Dynamics of pH in controlled stirred tank reactor, Ind.Eng.Chem.Process Des.Develop.11(1972) 71-78 Properties: Highly non-linear system. Columns: Column 1: time-steps Column 2: input u1 Column 3: input u2 Column 4: output y Category: Process industry systems ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/process_industry/pHdata.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 1:3], y=data[:, 3]) return data.train_test_split() if split_data else data
def evaporator(dir_placement=None, force_download=False, split_data=True): '''Contributed by: Favoreel KULeuven Departement Electrotechniek ESAT/SISTA Kardinaal Mercierlaan 94 B-3001 Leuven Belgium [email protected] Description: A four-stage evaporator to reduce the water content of a product, for example milk. The 3 inputs are feed flow, vapor flow to the first evaporator stage and cooling water flow. The three outputs are the dry matter content, the flow and the temperature of the outcoming product. Sampling: Number: 6305 Inputs: u1: feed flow to the first evaporator stage u2: vapor flow to the first evaporator stage u3: cooling water flow Outputs: y1: dry matter content y2: flow of the outcoming product y3: temperature of the outcoming product References: - Zhu Y., Van Overschee P., De Moor B., Ljung L., Comparison of three classes of identification methods. Proc. of SYSID '94, Vol. 1, 4-6 July, Copenhagen, Denmark, pp.~175-180, 1994. Properties: Columns: Column 1: input u1 Column 2: input u2 Column 3: input u3 Column 4: output y1 Column 5: output y2 Column 6: output y3 Category: Thermic systems Where: ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/process_industry/evaporator.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 1:4], y=data[:, 4:7]) return data.train_test_split() if split_data else data
def robot_arm(dir_placement=None, force_download=False, split_data=True): '''Contributed by: Favoreel KULeuven Departement Electrotechniek ESAT/SISTA Kardinaal Mercierlaan 94 B-3001 Leuven Belgium [email protected] Description: Data from a flexible robot arm. The arm is installed on an electrical motor. We have modeled the transfer function from the measured reaction torque of the structure on the ground to the acceleration of the flexible arm. The applied input is a periodic sine sweep. Sampling: Number: 1024 Inputs: u: reaction torque of the structure Outputs: y: accelaration of the flexible arm References: We are grateful to Hendrik Van Brussel and Jan Swevers of the laboratory of Production Manufacturing and Automation of the Katholieke Universiteit Leuven, who provided us with these data, which were obtained in the framework of the Belgian Programme on Interuniversity Attraction Poles (IUAP-nr.50) initiated by the Belgian State - Prime Minister's Office - Science Policy Programming. Properties: Columns: Column 1: input u Column 2: output y Category: mechanical systems Where: ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/mechanical/robot_arm.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 0], y=data[:, 1]) return data.train_test_split() if split_data else data
def dryer2(dir_placement=None, force_download=False, split_data=True): ''' This file describes the data in the dryer.dat file. 1. Contributed by: Jan Maciejowski Cambridge University, Engineering Department Trumpington Street, Cambridge CB2 1PZ, England. [email protected] 2. Process/Description: Data from an industrial dryer (by Cambridge Control Ltd) 3. Sampling time: 10 sec 4. Number of samples: 867 samples 5. Inputs: a. fuel flow rate b. hot gas exhaust fan speed c. rate of flow of raw material 6. Outputs: a. dry bulb temperature b. wet bulb temperature c. moisture content of raw material 7. References: a. Maciejowski J.M., Parameter estimation of multivariable systems using balanced realizations, in: Bittanti,S. (ed), Identification, Adaptation, and Learning, Springer (NATO ASI Series), 1996. b. Chou C.T., Maciejowski J.M., System Identification Using Balanced Parametrizations, IEEE Transactions on Automatic Control, vol. 42, no. 7, July 1997, pp. 956-974. 8. Known properties/peculiarities: 9. Some MATLAB-code to retrieve the data !gunzip dryer.dat.Z load dryer.dat U=dryer(:,2:4); Y=dryer(:,5:7); ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/process_industry/dryer2.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 1:4], y=data[:, 4:7]) return data.train_test_split() if split_data else data
def glassfurnace(dir_placement=None, force_download=False, split_data=True): '''This file describes the data in the glassfurnace.dat file. 1. Contributed by: Peter Van Overschee K.U.Leuven - ESAT - SISTA K. Mercierlaan 94 3001 Heverlee [email protected] 2. Process/Description: Data of a glassfurnace (Philips) 3. Sampling time 4. Number of samples: 1247 samples 5. Inputs: a. heating input b. cooling input c. heating input 6. Outputs: a. 6 outputs from temperature sensors in a cross section of the furnace 7. References: a. Van Overschee P., De Moor B., N4SID : Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems, Automatica, Special Issue on Statistical Signal Processing and Control, Vol. 30, No. 1, 1994, pp. 75-93 b. Van Overschee P., "Subspace identification : Theory, Implementation, Application" , Ph.D. Thesis, K.U.Leuven, February 1995. 8. Known properties/peculiarities 9. Some MATLAB-code to retrieve the data !gunzip glassfurnace.dat.Z load glassfurnace.dat T=glassfurnace(:,1); U=glassfurnace(:,2:4); Y=glassfurnace(:,5:10); ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/process_industry/glassfurnace.dat.gz' glassfurnace = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) U = glassfurnace[:, 1:4] Y = glassfurnace[:, 4:10] data = System_data(u=U, y=Y) return data.train_test_split() if split_data else data
def thermic_res_wall(dir_placement=None, force_download=False, split_data=True): '''Contributed by: Favoreel KULeuven Departement Electrotechniek ESAT/SISTA Kardinaal Mercierlaan 94 B-3001 Leuven Belgium [email protected] Description: Heat flow density through a two layer wall (brick and insulation layer). The inputs are the internal and external temperature of the wall. The output is the heat flow density through the wall. Sampling: Number: 1680 Inputs: u1: internal wall temperature u2: external wall temperature Outputs: y: heat flow density through the wall References: - System Identification Competition, Benchmark tests for estimation methods of thermal characteristics of buildings and building components. Organization: J. Bloem, Joint Research Centre, Ispra, Italy, 1994. Properties: Columns: Column 1: input u1 Column 2: input u2 Column 3: output y Category: thermic systems Where: ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/thermic/thermic_res_wall.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 0:2], y=data[:, 2]) return data.train_test_split() if split_data else data
def cstr(dir_placement=None, force_download=False, split_data=True): '''Contributed by: Jairo ESPINOSA ESAT-SISTA KULEUVEN Kardinaal Mercierlaan 94 B-3001 Heverlee Belgium [email protected] Description: The Process is a model of a Continuous Stirring Tank Reactor, where the reaction is exothermic and the concentration is controlled by regulating the coolant flow. Sampling: 0.1 min Number: 7500 Inputs: q: Coolant Flow l/min Outputs: Ca: Concentration mol/l T: Temperature Kelvin degrees References: J.D. Morningred, B.E.Paden, D.E. Seborg and D.A. Mellichamp "An adaptive nonlinear predictive controller" in. Proc. of the A.C.C. vol.2 1990 pp.1614-1619 G.Lightbody and G.W.Irwin. Nonlinear Control Structures Based on Embedded Neural System Models, IEEE Tran. on Neural Networks Vol.8 No.3 pp.553-567 J.Espinosa and J. Vandewalle, Predictive Control Using Fuzzy Models, Submitted to the 3rd. On-Line World Conference on Soft Computing in Engineering Design and Manufacturing. Properties: Columns: Column 1: time-steps Column 2: input q Column 3: output Ca Column 4: output T Category: Process Industry Systems Where: ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/espinosa/datasets/cstr.dat ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/process_industry/cstr.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 1], y=data[:, 2:4]) return data.train_test_split() if split_data else data
def foetal_ecg(dir_placement=None, force_download=False, split_data=True): '''Contributed by: Lieven De Lathauwer [email protected] Description: cutaneous potential recordings of a pregnant woman (8 channels) Sampling: 10 sec Number: 2500 x 8 Inputs: Outputs: 1-5: abdominal 6,7,8: thoracic References: Dirk Callaerts, "Signal Separation Methods based on Singular Value Decomposition and their Application to the Real-Time Extraction of the Fetal Electrocardiogram from Cutaneous Recordings", Ph.D. Thesis, K.U.Leuven - E.E. Dept., Dec. 1989. L. De Lathauwer, B. De Moor, J. Vandewalle, ``Fetal Electrocardiogram Extraction by Blind Source Subspace Separation'', IEEE Trans. Biomedical Engineering, Vol. 47, No. 5, May 2000, Special Topic Section on Advances in Statistical Signal Processing for Biomedicine, pp. 567-572. Properties: Columns: Column 1: time-steps Column 2-9: observations Category: 4 ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/biomedical/foetal_ecg.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=None, y=data[:, 1:9]) return data.train_test_split() if split_data else data
def flutter(dir_placement=None, force_download=False, split_data=True): '''Contributed by: Favoreel KULeuven Departement Electrotechniek ESAT/SISTA Kardinaal Mercierlaan 94 B-3001 Leuven Belgium [email protected] Description: Wing flutter data. Due to industrial secrecy agreements we are not allowed to reveal more details. Important to know is that the input is highly colored. Sampling: Number: 1024 Inputs: u: Outputs: y: References: Feron E., Brenner M., Paduano J. and Turevskiy A.. "Time-frequency analysis for transfer function estimation and application to flutter clearance", in AIAA J. on Guidance, Control & Dynamics, vol. 21, no. 3, pp. 375-382, May-June, 1998. Properties: Columns: Column 1: input u Column 2: output y Category: mechanical systems Where: ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/mechanical/flutter.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 0], y=data[:, 1]) return data.train_test_split() if split_data else data
def Silverbox(dir_placement=None,force_download=False, split_data=True): '''The Silverbox system can be seen as an electronic implementation of the Duffing oscillator. It is build as a 2nd order linear time-invariant system with a 3rd degree polynomial static nonlinearity around it in feedback. This type of dynamics are, for instance, often encountered in mechanical systems. The provided data is part of a previously published ECC paper available online. A technical note describing the Silverbox benchmark can be found here. All the provided data (.mat file format) on the Silverbox system is available for download here. This .zip file contains the Silverbox dataset as specified in the benchmark document (V1 is the input record, while V2 is the measured output), extended with .csv version of the same data and an extra data record containing a Schroeder phase multisine measurement. Please refer to the Silverbox benchmark as: T. Wigren and J. Schoukens. Three free data sets for development and benchmarking in nonlinear system identification. 2013 European Control Conference (ECC), pp.2933-2938 July 17-19, 2013, Zurich, Switzerland. Previously published results on the Silverbox benchmark are listed in the history section of this webpage. Special thanks to Johan Schoukens for creating this benchmark, and to Torbjörn Wigren for hosting this benchmark. ''' # url = 'http://www.nonlinearbenchmark.org/FILES/BENCHMARKS/SILVERBOX/SilverboxFiles.zip' #old url = 'https://drive.google.com/file/d/17iS-6oBUUgrmiAcrZoG9S5sOaljZnDSy/view' download_size=5793999 save_dir = cashed_download(url, 'Silverbox', zip_name='SilverboxFiles.zip',\ dir_placement=dir_placement, download_size=download_size, force_download=force_download) save_dir = os.path.join(save_dir,'SilverboxFiles') #matfiles location out = loadmat(os.path.join(save_dir,'Schroeder80mV.mat')) u,y = out['V1'][0], out['V2'][0] data1 = System_data(u=u,y=y) out = loadmat(os.path.join(save_dir,'SNLS80mV.mat')) #train test u,y = out['V1'][0], out['V2'][0] data2 = System_data(u=u,y=y) if split_data: data_out = System_data(u=data2.u[40650:127400],y=data2.y[40650:127400]) return data_out.train_test_split() return System_data_list([data1, data2])
def dryer(dir_placement=None, force_download=False, split_data=True): '''Contributed by: Favoreel KULeuven Departement Electrotechniek ESAT/SISTA Kardinaal Mercierlaan 94 B-3001 Leuven Belgium [email protected] Description: Laboratory setup acting like a hair dryer. Air is fanned through a tube and heated at the inlet. The air temperature is measured by a thermocouple at the output. The input is the voltage over the heating device (a mesh of resistor wires). Sampling: Number: 1000 Inputs: u: voltage of the heating device Outputs: y: output air temperature References: - Ljung L. System identification - Theory for the User. Prentice Hall, Englewood Cliffs, NJ, 1987. - Ljung. L. System Identification Toolbox. For Use with Matlab. The Mathworks Inc., Mass., U.S.A., 1991. Properties: Columns: Column 1: input u Column 2: output y Category: mechanical systems Where: ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/mechanical/dryer.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 0], y=data[:, 1]) return data.train_test_split() if split_data else data
def sun_spot_data(dir_placement=None, force_download=False, split_data=True): url = 'http://www.sidc.be/silso/DATA/SN_y_tot_V2.0.txt' download_size = None save_dir = cashed_download(url, 'sun_spot_data', dir_placement=dir_placement, download_size=download_size, force_download=force_download, zipped=False) with open(os.path.join(save_dir, 'SN_y_tot_V2.0.txt'), 'r') as f: data = f.read()[:-2] fixed_name = os.path.join(save_dir, 'SN_y_tot_V2.0_fix.txt') with open(fixed_name, 'w') as f: f.write(data) data = np.loadtxt(fixed_name) yEst = data[:, 1] datasets = System_data(u=None, y=yEst) return datasets.train_test_split( split_fraction=0.4) if split_data else datasets #is already splitted
def ballbeam(dir_placement=None, force_download=False, split_data=True): '''This file describes the data in the ballbeam.dat file. 1. Contributed by: Peter Van Overschee K.U.Leuven - ESAT - SISTA K. Mercierlaan 94 3001 Heverlee [email protected] 2. Process/Description: Data of a the ball and beam practicum at ESAT-SISTA. 3. Sampling time 0.1 sec. 4. Number of samples: 1000 samples 5. Inputs: a. angle of the beam 6. Outputs: a. position of the ball 7. References: a. Van Overschee P., "Subspace identification : Theory, Implementation, Application" , Ph.D. Thesis, K.U.Leuven, February 1995, pp. 200-206 8. Known properties/peculiarities 9. Some MATLAB-code to retrieve the data !gunzip ballbeam.dat.Z load ballbeam.dat U=ballbeam(:,1); Y=ballbeam(:,2); ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/mechanical/ballbeam.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 0], y=data[:, 1]) return data.train_test_split() if split_data else data
def erie(dir_placement=None, force_download=False, split_data=True, noise=10): '''This file describes the data in the erie.dat file. 1. Contributed by: Peter Van Overschee K.U.Leuven - ESAT - SISTA K. Mercierlaan 94 3001 Heverlee [email protected] 2. Process/Description: Data of a simulation (not real !) related to the related to the identification of the western basin of Lake Erie. The series consists of 4 series: U_erie, Y_erie: without noise (original series) U_erie_n10, Y_erie_n10: 10 percent additive white noise U_erie_n20, Y_erie_n20: 20 percent additive white noise U_erie_n30, Y_erie_n30: 30 percent additive white noise 3. Sampling time 1 month 4. Number of samples: 57 samples 5. Inputs: a. water temperature b. water conductivity c. water alkalinity d. NO3 e. total hardness 6. Outputs: a. dissolved oxigen b. algae 7. References: R.P. Guidorzi, M.P. Losito, T. Muratori, On the last eigenvalue test in the structural identification of linear multivariable systems, Proceedings of the V European meeting on cybernetics and systems research, Vienna, april 1980. 8. Known properties/peculiarities The considered period runs from march 1968 till november 1972. 9. Some MATLAB-code to retrieve the data !guzip erie.dat.Z load erie.dat U=erie(:,1:20); Y=erie(:,21:28); U_erie=U(:,1:5); U_erie_n10=U(:,6:10); U_erie_n20=U(:,11:15); U_erie_n30=U(:,16:20); Y_erie=Y(:,1:2); Y_erie_n10=Y(:,3:4); Y_erie_n20=Y(:,5:6); Y_erie_n30=Y(:,7:8); ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/environmental/erie.dat.gz' erie = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) U = erie[:, :20] Y = erie[:, 20:] U_erie = U[:, :5] U_erie_n10 = U[:, 5:10] U_erie_n20 = U[:, 10:15] U_erie_n30 = U[:, 15:20] Y_erie = Y[:, 0:2] #two outputs Y_erie_n10 = Y[:, 2:4] Y_erie_n20 = Y[:, 4:6] Y_erie_n30 = Y[:, 6:8] if noise == 0: data = System_data(u=U_erie, y=Y_erie) elif noise == 10: data = System_data(u=U_erie_n10, y=Y_erie_n10) elif noise == 20: data = System_data(u=U_erie_n20, y=Y_erie_n20) elif noise == 30: data = System_data(u=U_erie_n30, y=Y_erie_n30) return data.train_test_split() if split_data else data
def destill(dir_placement=None, force_download=False, split_data=True, noise=10): '''This file describes the data in the destill.dat file. 1. Contributed by: Peter Van Overschee K.U.Leuven - ESAT - SISTA K. Mercierlaan 94 3001 Heverlee [email protected] 2. Process/Description: Data of a simulation (not real !) related to the identification of an ethane-ethylene destillationcolumn. The series consists of 4 series: U_dest, Y_dest: without noise (original series) U_dest_n10, Y_dest_n10: 10 percent additive white noise U_dest_n20, Y_dest_n20: 20 percent additive white noise U_dest_n30, Y_dest_n30: 30 percent additive white noise 3. Sampling time 15 min. 4. Number of samples: 90 samples 5. Inputs: a. ratio between the reboiler duty and the feed flow b. ratio between the reflux rate and the feed flow c. ratio between the distillate and the feed flow d. input ethane composition e. top pressure 6. Outputs: a. top ethane composition b. bottom ethylene composition c. top-bottom differential pressure. 7. References: R.P. Guidorzi, M.P. Losito, T. Muratori, The range error test in the structural identification of linear multivariable systems, IEEE transactions on automatic control, Vol AC-27, pp 1044-1054, oct. 1982. 8. Known properties/peculiarities 9. Some MATLAB-code to retrieve the data !gunzip destill.dat.Z load destill.dat U=destill(:,1:20); Y=destill(:,21:32); U_dest=U(:,1:5); U_dest_n10=U(:,6:10); U_dest_n20=U(:,11:15); U_dest_n30=U(:,16:20); Y_dest=Y(:,1:3); Y_dest_n10=Y(:,4:6); Y_dest_n20=Y(:,7:9); Y_dest_n30=Y(:,10:12); ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/process_industry/destill.dat.gz' destill = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) U = destill[:, :20] Y = destill[:, 20:] U_dest = U[:, :5] U_dest_n10 = U[:, 5:10] U_dest_n20 = U[:, 10:15] U_dest_n30 = U[:, 15:20] Y_dest = Y[:, 0:3] Y_dest_n10 = Y[:, 3:6] Y_dest_n20 = Y[:, 6:9] Y_dest_n30 = Y[:, 9:12] if noise == 0: data = System_data(u=U_dest, y=Y_dest) elif noise == 10: data = System_data(u=U_dest_n10, y=Y_dest_n10) elif noise == 20: data = System_data(u=U_dest_n20, y=Y_dest_n20) elif noise == 30: data = System_data(u=U_dest_n30, y=Y_dest_n30) return data.train_test_split() if split_data else data
def exchanger(dir_placement=None, force_download=False, split_data=True): '''This file describes the data in exchanger.dat 1. Contributed by: Sergio Bittanti Politecnico di Milano Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 MILANO (Italy) [email protected] 2. Process/Description: The process is a liquid-satured steam heat exchanger, where water is heated by pressurized saturated steam through a copper tube. The output variable is the outlet liquid temperature. The input variables are the liquid flow rate, the steam temperature, and the inlet liquid temperature. In this experiment the steam temperature and the inlet liquid temperature are kept constant to their nominal values. 3. Sampling time: 1 s 4. Number of samples: 4000 5. Inputs: q: liquid flow rate 6. Outputs: th: outlet liquid temperature 7. References: S. Bittanti and L. Piroddi, "Nonlinear identification and control of a heat exchanger: a neural network approach", Journal of the Franklin Institute, 1996. L. Piroddi, Neural Networks for Nonlinear Predictive Control. Ph.D. Thesis, Politecnico di Milano (in Italian), 1995. 8. Known properties/peculiarities: The heat exchanger process is a significant benchmark for nonlinear control design purposes, since it is characterized by a non minimum phase behaviour. In the references cited above the control problem of regulating the output temperature of the liquid-satured steam heat exchanger by acting on the liquid flow rate is addressed, and both direct and inverse identifications of the data are performed. Columns: Column 1: time-steps Column 2: input q Column 3: output th ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/process_industry/exchanger.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 1], y=data[:, 2]) return data.train_test_split() if split_data else data
def winding(dir_placement=None, force_download=False, split_data=True): '''Contributed by: Favoreel KULeuven Departement Electrotechniek ESAT/SISTA Kardinaal Mercierlaan 94 B-3001 Leuven Belgium [email protected] Description: The process is a test setup of an industrial winding process. The main part of the plant is composed of a plastic web that is unwinded from first reel (unwinding reel), goes over the traction reel and is finally rewinded on the the rewinding reel. Reel 1 and 3 are coupled with a DC-motor that is controlled with input setpoint currents I1* and I3*. The angular speed of each reel (S1, S2 and S3) and the tensions in the web between reel 1 and 2 (T1) and between reel 2 and 3 (T3) are measured by dynamo tachometers and tension meters. We thank Th. Bastogne from the University of Nancy for providing us with these data. We are grateful to Thierry Bastogne of the Universite Henri Point Care, who provided us with these data. Sampling: 0.1 Sec Number: 2500 Inputs: u1: The angular speed of reel 1 (S1) u2: The angular speed of reel 2 (S2) u3: The angular speed of reel 3 (S3) u4: The setpoint current at motor 1 (I1*) u5: The setpoint current at motor 2 (I3*) Outputs: y1: Tension in the web between reel 1 and 2 (T1) y2: Tension in the web between reel 2 and 3 (T3) References: - Bastogne T., Identification des systemes multivariables par les methodes des sous-espaces. Application a un systeme d'entrainement de bande. PhD thesis. These de doctorat de l'Universite Henri Poincare, Nancy 1. - Bastogne T., Noura H., Richard A., Hittinger J.M., Application of subspace methods to the identification of a winding process. In: Proc. of the 4th European Control Conference, Vol. 5, Brussels. Properties: Columns: Column 1: input u1 Column 2: input u2 Column 3: input u3 Column 4: input u4 Column 5: input u5 Column 6: output y1 Column 7: output y2 Category: Industrial test setup ''' url = 'ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/data/process_industry/winding.dat.gz' data = daisydata_download(url, dir_placement=dir_placement, force_download=force_download) data = System_data(u=data[:, 0:5], y=data[:, 5:7]) return data.train_test_split() if split_data else data