def get_feed_dicts(outputs): """Get the training and evaluation dictionaries that map placeholders to the values that they should take during training and evaluation, respectively (e.g., used for dropout or batch normalization). Args: outputs (dict[str, deep_architect.core.Output]): Dictionary of named outputs of the model (i.e., with no unspecified hyperparameters available) sampled from the search space. Returns: (dict, dict): Training and evaluation dictionaries where the keys are placeholders and the values are the values the placeholders should take during each of these stages. """ train_feed = {} eval_feed = {} def fn(x): if hasattr(x, 'train_feed'): train_feed.update(x.train_feed) if hasattr(x, 'eval_feed'): eval_feed.update(x.eval_feed) return False co.traverse_backward(outputs, fn) return (train_feed, eval_feed)
def setTraining(output_lst, isTraining): def fn(mx): if hasattr(mx, 'isTraining'): mx.isTraining = isTraining co.traverse_backward(output_lst, fn)
def setRecompile(output_lst, recompile): def fn(mx): mx._is_compiled = not recompile co.traverse_backward(output_lst, fn) logger.debug('set_recompile')
def extract_features(inputs, outputs): """Extract a feature representation of a model represented through inputs and outputs. This function has been mostly used for performance prediction on fully specified models, i.e., after all the hyperparameters in the search space have specified. After this, there is a single model for which we can compute an appropriate feature representation containing information about the connections that the model makes and the values of the hyperparameters. Args: inputs (dict[str, deep_architect.core.Input]): Dictionary mapping names to inputs of the architecture. outputs (dict[str, deep_architect.core.Output]): Dictionary mapping names to outputs of the architecture. Returns: dict[str, list[str]]: Representation of the architecture as a dictionary where each key is associated to a list with different types of features. """ module_memo = co.OrderedSet() module_feats = [] connection_feats = [] module_hyperp_feats = [] # getting all the modules module_memo = [] def fn(m): module_memo.append(m) co.traverse_backward(outputs, fn) for m in module_memo: # module features m_feats = m.get_name() module_feats.append(m_feats) for ox_localname, ox in iteritems(m.outputs): if ox.is_connected(): ix_lst = ox.get_connected_inputs() for ix in ix_lst: # connection features c_feats = "%s |-> %s" % (ox.get_name(), ix.get_name()) connection_feats.append(c_feats) # module hyperparameters for h_localname, h in iteritems(m.hyperps): mh_feats = "%s/%s : %s = %s" % (m.get_name(), h_localname, h.get_name(), h.get_value()) module_hyperp_feats.append(mh_feats) return { 'module_feats': module_feats, 'connection_feats': connection_feats, 'module_hyperp_feats': module_hyperp_feats, }
def _call_fn_on_pytorch_module(outputs, fn): def fn_iter(mx): if hasattr(mx, 'pyth_modules'): for pyth_m in mx.pyth_modules: fn(pyth_m) return False co.traverse_backward(outputs, fn_iter)
def draw_graph(outputs, draw_hyperparameters=True, draw_io_labels=True, draw_module_hyperparameter_info=True, out_folderpath=None, graph_name='graph', print_to_screen=True): """Draws a graph representation of the current state of the search space. All edges are directed. An edge between two modules represents the output of the first module going into the input of the second module. An edge between a module and an hyperparameter represents the dependency of that module on that hyperparameter. This visualization functionality is useful to verify that the description of the search space done through the domain-specific language encodes the intended search space. .. note:: All drawing options are set to `True` to give a sense of all the information that can be displayed simultaneously. This can lead to cluttered graphs and slow rendering. We recommend changing the defaults according to the desired behavior. For generating a representation for a fully specified model, we recommend setting `draw_hyperparameters` to `False`, as if we are only concerned with the resulting model, the sharing structure of hyperparameters does not really matter. We recommend using `draw_hyperparameters` set to `True` when the user wishes to visualize the hyperparameter sharing pattern, e.g., to verify that it has been implemented correctly. Args: outputs (dict[str, deep_architect.core.Output]): Dictionary of named outputs from which we can reach all the modules in the search space by backwards traversal. draw_hyperparameters (bool, optional): Draw hyperparameter nodes in the graph, representing the dependencies between hyperparameters and modules. draw_io_labels (bool, optional): If `True`, draw edge labels connecting different modules with the local names of the input and output that are being connected. draw_module_hyperparameter_info (bool, optional): If `True`, draw the hyperparameters of a module alongside the module. graph_name (str, optional): Name of the file used to store the rendered graph. Only needs to be provided if we desire to output the graph to a file, rather than just show it. out_folderpath (str, optional): Folder to which to store the PDF file with the rendered graph. If no path is provided, no file is created. print_to_screen (bool, optional): Shows the result of rendering the graph directly to screen. """ assert print_to_screen or out_folderpath is not None g = graphviz.Digraph() edge_fs = '10' h_fs = '10' penwidth = '1' def _draw_connected_input(ix_localname, ix): ox = ix.get_connected_output() if not draw_io_labels: label = '' else: ox_localname = None for ox_iter_localname, ox_iter in ox.get_module().outputs.items(): if ox_iter == ox: ox_localname = ox_iter_localname break assert ox_localname is not None label = ix_localname + ':' + ox_localname g.edge(ox.get_module().get_name(), ix.get_module().get_name(), label=label, fontsize=edge_fs) def _draw_unconnected_input(ix_localname, ix): g.node(ix.get_name(), shape='invhouse', penwidth=penwidth, fillcolor='firebrick', style='filled') g.edge(ix.get_name(), ix.get_module().get_name()) def _draw_module_hyperparameter(m, h_localname, h): if h.has_value_assigned(): label = h_localname + '=' + str(h.get_value()) else: label = h_localname g.edge(h.get_name(), m.get_name(), label=label, fontsize=edge_fs) def _draw_dependent_hyperparameter_relations(h_dep): for h_localname, h in h_dep._hyperps.items(): if h.has_value_assigned(): label = h_localname + '=' + str(h.get_value()) else: label = h_localname g.edge(h.get_name(), h_dep.get_name(), label=label, fontsize=edge_fs) def _draw_module_hyperparameter_info(m): g.node( m.get_name(), xlabel="<" + '<br align="right"/>'.join([ '<FONT POINT-SIZE="%s">' % h_fs + h_localname + ('=' + str(h.get_value()) if h.has_value_assigned() else '') + "</FONT>" for h_localname, h in m.hyperps.items() ]) + ">") def _draw_output_terminal(ox_localname, ox): g.node(ox.get_name(), shape='house', penwidth=penwidth, fillcolor='deepskyblue', style='filled') g.edge(ox.get_module().get_name(), ox.get_name()) nodes = set() def fn(m): """Adds the module information to the graph that is local to the module. """ nodes.add(m.get_name()) for ix_localname, ix in m.inputs.items(): if ix.is_connected(): _draw_connected_input(ix_localname, ix) else: _draw_unconnected_input(ix_localname, ix) if draw_hyperparameters: for h_localname, h in m.hyperps.items(): _draw_module_hyperparameter(m, h_localname, h) if draw_module_hyperparameter_info: _draw_module_hyperparameter_info(m) return False # generate most of the graph. co.traverse_backward(outputs, fn) # drawing the hyperparameter graph. if draw_hyperparameters: hs = co.get_all_hyperparameters(outputs) for h in hs: if isinstance(h, co.DependentHyperparameter): _draw_dependent_hyperparameter_relations(h) g.node(h.get_name(), fontsize=h_fs, fillcolor='darkseagreen', style='filled') # add the output terminals. for m in co.extract_unique_modules(list(outputs.values())): for ox_localname, ox in m.outputs.items(): _draw_output_terminal(ox_localname, ox) # minor adjustments to attributes. for s in nodes: g.node(s, shape='rectangle', penwidth=penwidth, fillcolor='goldenrod', style='filled') if print_to_screen or out_folderpath is not None: g.render(graph_name, out_folderpath, view=print_to_screen, cleanup=True)
def set_is_training(outputs, is_training): def fn(mx): if hasattr(mx, 'is_training'): mx.is_training = is_training co.traverse_backward(outputs, fn)
def set_recompile(outputs, recompile): def fn(mx): mx._is_compiled = not recompile co.traverse_backward(outputs, fn)