def test_MpiAdam(): np.random.seed(0) tf.set_random_seed(0) a = tf.Variable(np.random.randn(3).astype('float32')) b = tf.Variable(np.random.randn(2, 5).astype('float32')) loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b)) stepsize = 1e-2 update_op = tf.train.AdamOptimizer(stepsize).minimize(loss) do_update = U.function([], loss, updates=[update_op]) tf.get_default_session().run(tf.global_variables_initializer()) for i in range(10): print(i, do_update()) tf.set_random_seed(0) tf.get_default_session().run(tf.global_variables_initializer()) var_list = [a, b] lossandgrad = U.function([], [loss, U.flatgrad(loss, var_list)], updates=[update_op]) adam = MpiAdam(var_list) for i in range(10): l, g = lossandgrad() adam.update(g, stepsize) print(i, l)
def learn(env, policy_fn, *, timesteps_per_batch, # what to train on max_kl, cg_iters, gamma, lam, # advantage estimation entcoeff=0.0, cg_damping=1e-2, vf_stepsize=3e-4, vf_iters =3, max_timesteps=0, max_episodes=0, max_iters=0, # time constraint callback=None ): nworkers = MPI.COMM_WORLD.Get_size() rank = MPI.COMM_WORLD.Get_rank() np.set_printoptions(precision=3) # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_fn("pi", ob_space, ac_space) oldpi = policy_fn("oldpi", ob_space, ac_space) atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = tf.reduce_mean(kloldnew) meanent = tf.reduce_mean(ent) entbonus = entcoeff * meanent vferr = tf.reduce_mean(tf.square(pi.vpred - ret)) ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold surrgain = tf.reduce_mean(ratio * atarg) optimgain = surrgain + entbonus losses = [optimgain, meankl, entbonus, surrgain, meanent] loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"] dist = meankl all_var_list = pi.get_trainable_variables() var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")] var_list.extend([v for v in all_var_list if v.name.split("/")[1].startswith("me")]) vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")] vfadam = MpiAdam(vf_var_list) get_flat = U.GetFlat(var_list) set_from_flat = U.SetFromFlat(var_list) klgrads = tf.gradients(dist, var_list) flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan") shapes = [var.get_shape().as_list() for var in var_list] start = 0 tangents = [] for shape in shapes: sz = U.intprod(shape) tangents.append(tf.reshape(flat_tangent[start:start+sz], shape)) start += sz gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111 fvp = U.flatgrad(gvp, var_list) assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())]) compute_losses = U.function([ob, ac, atarg], losses) compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)]) compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp) compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list)) @contextmanager def timed(msg): if rank == 0: print(colorize(msg, color='magenta')) tstart = time.time() yield print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta')) else: yield def allmean(x): assert isinstance(x, np.ndarray) out = np.empty_like(x) MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM) out /= nworkers return out act_params = { 'name': "pi", 'ob_space': ob_space, 'ac_space': ac_space, } pi = ActWrapper(pi, act_params) U.initialize() th_init = get_flat() MPI.COMM_WORLD.Bcast(th_init, root=0) set_from_flat(th_init) vfadam.sync() print("Init param sum", th_init.sum(), flush=True) # Prepare for rollouts # ---------------------------------------- seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards assert sum([max_iters>0, max_timesteps>0, max_episodes>0])==1 while True: if callback: callback(locals(), globals()) if max_timesteps and timesteps_so_far >= max_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break logger.log("********** Iteration %i ************"%iters_so_far) with timed("sampling"): seg = seg_gen.__next__() add_vtarg_and_adv(seg, gamma, lam) ob = np.concatenate([s['ob'] for s in seg], axis=0) ac = np.concatenate([s['ac'] for s in seg], axis=0) atarg = np.concatenate([s['adv'] for s in seg], axis=0) tdlamret = np.concatenate([s['tdlamret'] for s in seg], axis=0) vpredbefore = np.concatenate([s["vpred"] for s in seg], axis=0) # predicted value function before udpate atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate # if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret) # if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy args = ob, ac, atarg fvpargs = [arr[::5] for arr in args] def fisher_vector_product(p): return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p assign_old_eq_new() # set old parameter values to new parameter values with timed("computegrad"): *lossbefore, g = compute_lossandgrad(*args) lossbefore = allmean(np.array(lossbefore)) g = allmean(g) if np.allclose(g, 0): logger.log("Got zero gradient. not updating") else: with timed("cg"): stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0) assert np.isfinite(stepdir).all() shs = .5*stepdir.dot(fisher_vector_product(stepdir)) lm = np.sqrt(shs / max_kl) # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g)) fullstep = stepdir / lm expectedimprove = g.dot(fullstep) surrbefore = lossbefore[0] stepsize = 1.0 thbefore = get_flat() for _ in range(10): thnew = thbefore + fullstep * stepsize set_from_flat(thnew) meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args))) improve = surr - surrbefore logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve)) if not np.isfinite(meanlosses).all(): logger.log("Got non-finite value of losses -- bad!") elif kl > max_kl * 1.5: logger.log("violated KL constraint. shrinking step.") elif improve < 0: logger.log("surrogate didn't improve. shrinking step.") else: logger.log("Stepsize OK!") break stepsize *= .5 else: logger.log("couldn't compute a good step") set_from_flat(thbefore) if nworkers > 1 and iters_so_far % 20 == 0: paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:]) for (lossname, lossval) in zip(loss_names, meanlosses): logger.record_tabular(lossname, lossval) with timed("vf"): for _ in range(vf_iters): for (mbob, mbret) in dataset.iterbatches((ob, tdlamret), include_final_partial_batch=False, batch_size=64): g = allmean(compute_vflossandgrad(mbob, mbret)) vfadam.update(g, vf_stepsize) logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret)) # lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values lrlocal = (seg[0]["ep_lens"], seg[0]["ep_rets"]) # local values listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples lens, rews = map(flatten_lists, zip(*listoflrpairs)) lenbuffer.extend(lens) rewbuffer.extend(rews) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if rank == 0: logger.dump_tabular()
def __init__( self, env, policy_fn, *, timesteps_per_batch, # what to train on max_kl, cg_iters, gamma, lam, # advantage estimation entcoeff=0.0, cg_damping=1e-2, vf_stepsize=3e-4, vf_iters=3, max_timesteps=0, max_episodes=0, max_iters=0, # time constraint callback=None, max_path_length=None): self.gamma = gamma self.gae_lambda = lam self.max_kl = max_kl self.cg_iters = cg_iters self.cg_damping = cg_damping self.vf_stepsize = vf_stepsize self.vf_iters = vf_iters self.time_steps_per_batch = timesteps_per_batch if max_path_length is None: self.max_path_length = timesteps_per_batch else: self.max_path_length = max_path_length self.nworkers = MPI.COMM_WORLD.Get_size() self.rank = MPI.COMM_WORLD.Get_rank() np.set_printoptions(precision=3) # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_fn("pi", ob_space, ac_space) oldpi = policy_fn("oldpi", ob_space, ac_space) atarg = tf.placeholder( dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return # n_size = tf.placeholder(dtype=tf.float32, shape=[None]) # neighborhood size ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = tf.reduce_mean(kloldnew) meanent = tf.reduce_mean(ent) entbonus = entcoeff * meanent vferr = tf.reduce_mean(tf.square(pi.vpred - ret)) # pred_n_error = tf.reduce_mean(tf.square(pi.predict_n - n_size)) ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold surrgain = tf.reduce_mean(ratio * atarg) optimgain = surrgain + entbonus # - pred_n_error losses = [optimgain, meankl, entbonus, surrgain, meanent, vferr] # , pred_n_error] self.loss_names = [ "optimgain", "meankl", "entloss", "surrgain", "entropy", "vf_loss" ] # , "pred_n_error"] dist = meankl all_var_list = pi.get_trainable_variables() var_list = [ v for v in all_var_list if v.name.split("/")[1].startswith("pol") ] var_list.extend( [v for v in all_var_list if v.name.split("/")[1].startswith("me")]) vf_var_list = [ v for v in all_var_list if v.name.split("/")[1].startswith("vf") ] # vf_var_list.extend([v for v in all_var_list if v.name.split("/")[1].startswith("me")]) self.vfadam = MpiAdam(vf_var_list) self.get_flat = U.GetFlat(var_list) self.set_from_flat = U.SetFromFlat(var_list) klgrads = tf.gradients(dist, var_list) flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan") shapes = [var.get_shape().as_list() for var in var_list] start = 0 tangents = [] for shape in shapes: sz = U.intprod(shape) tangents.append(tf.reshape(flat_tangent[start:start + sz], shape)) start += sz gvp = tf.add_n([ tf.reduce_sum(g * tangent) for (g, tangent) in zipsame(klgrads, tangents) ]) # pylint: disable=E1111 fvp = U.flatgrad(gvp, var_list) self.assign_old_eq_new = U.function( [], [], updates=[ tf.assign(oldv, newv) for ( oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables()) ]) self.compute_losses = U.function([ob, ac, atarg, ret], losses) self.compute_lossandgrad = U.function( [ob, ac, atarg, ret], losses + [U.flatgrad(optimgain, var_list)]) self.compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp) self.compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list)) act_params = { 'name': "pi", 'ob_space': ob_space, 'ac_space': ac_space, } self.pi = ActWrapper(pi, act_params) U.initialize() th_init = self.get_flat() MPI.COMM_WORLD.Bcast(th_init, root=0) self.set_from_flat(th_init) self.vfadam.sync() print("Init param sum", th_init.sum(), flush=True) # self.seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True) if self.time_steps_per_batch > self.max_path_length: self.nr_traj_seg_gens = int(self.time_steps_per_batch / self.max_path_length) self.seg_gen = [ copy_func(traj_segment_generator, "traj_seg_gen_{}".format(i))(pi, env, timesteps_per_batch, stochastic=True) for i in range(self.nr_traj_seg_gens) ] else: self.nr_traj_seg_gens = 1 self.seg_gen = [ traj_segment_generator(pi, env, self.time_steps_per_batch, stochastic=True) ]