def input_value_classification_deep_l1_training(): logger = logging_daily.logging_daily( resource_filename('deepbiome', 'tests/data/log_info.yaml')) logger.reset_logging() log = logger.get_logging() log.setLevel(logging_daily.logging.INFO) config_data = configuration.Configurator( resource_filename('deepbiome', 'tests/data/classification_deep_l1_path_info.cfg'), log) config_data.set_config_map(config_data.get_section_map()) config_data.print_config_map() config_network = configuration.Configurator( resource_filename( 'deepbiome', 'tests/data/classification_deep_l1_network_info.cfg'), log) config_network.set_config_map(config_network.get_section_map()) config_network.print_config_map() path_info = config_data.get_config_map() network_info = config_network.get_config_map() for k, v in path_info['data_info'].items(): if 'data' in v: resource_filename('deepbiome', 'tests/%s' % v) path_info['data_info'][k] = resource_filename( 'deepbiome', 'tests/%s' % v) return log, network_info, path_info
gpu_memory_fraction = None try: max_queue_size = int(argdict['max_queue_size'][0]) except: max_queue_size = 10 try: workers = int(argdict['workers'][0]) except: workers = 1 try: use_multiprocessing = argdict['use_multiprocessing'][0] == 'True' except: use_multiprocessing = False # Logger ########################################################### logger = logging_daily.logging_daily(argdict['log_info'][0]) logger.reset_logging() log = logger.get_logging() log.setLevel(logging_daily.logging.INFO) log.info('Argument input') for argname, arg in argdict.items(): log.info(' {}:{}'.format(argname, arg)) # Configuration #################################################### config_data = configuration.Configurator(argdict['path_info'][0], log) config_data.set_config_map(config_data.get_section_map()) config_data.print_config_map() config_network = configuration.Configurator(argdict['network_info'][0], log) config_network.set_config_map(config_network.get_section_map())