def __init__(self, use_pretrained_weights=True, model_image_shape=(128, 128, 1)): model = PanopticNet('resnet50', input_shape=model_image_shape, norm_method='whole_image', num_semantic_heads=3, num_semantic_classes=[1, 1, 2], location=True, include_top=True, lite=True, interpolation='bilinear') if use_pretrained_weights: weights_path = get_file( os.path.basename(WEIGHTS_PATH), WEIGHTS_PATH, cache_subdir='models', md5_hash='50614f04d5dbc4b3eadd897fa5fb0e23' ) model.load_weights(weights_path) else: weights_path = None super(CytoplasmSegmentation, self).__init__(model, model_image_shape=model_image_shape, model_mpp=0.65, preprocessing_fn=phase_preprocess, postprocessing_fn=deep_watershed, dataset_metadata=self.dataset_metadata, model_metadata=self.model_metadata)
def __init__(self, use_pretrained_weights=True, model_image_shape=(256, 256, 2)): model = PanopticNet('resnet50', input_shape=model_image_shape, norm_method=None, num_semantic_heads=4, num_semantic_classes=[1, 1, 2, 3], location=True, include_top=True, use_imagenet=False) if use_pretrained_weights: weights_path = get_file( os.path.basename(WEIGHTS_PATH), WEIGHTS_PATH, cache_subdir='models', md5_hash='66fec859eacc5222b5e7d2baa105f3e3') model.load_weights(weights_path) else: weights_path = None super(MultiplexSegmentation, self).__init__(model, model_image_shape=model_image_shape, model_mpp=2.0, preprocessing_fn=phase_preprocess, postprocessing_fn=deep_watershed_mibi, dataset_metadata=self.dataset_metadata, model_metadata=self.model_metadata)
def __init__(self, use_pretrained_weights=True, model_image_shape=(128, 128, 1)): model = PanopticNet('resnet50', input_shape=model_image_shape, norm_method='whole_image', num_semantic_heads=2, num_semantic_classes=[1, 1], location=True, include_top=True, lite=True, use_imagenet=use_pretrained_weights, interpolation='bilinear') if use_pretrained_weights: weights_path = get_file( os.path.basename(WEIGHTS_PATH), WEIGHTS_PATH, cache_subdir='models', file_hash='104a7d7884c80c37d2bce6d1c3a17c7a') model.load_weights(weights_path, by_name=True) else: weights_path = None super(CytoplasmSegmentation, self).__init__(model, model_image_shape=model_image_shape, model_mpp=0.65, preprocessing_fn=phase_preprocess, postprocessing_fn=deep_watershed, dataset_metadata=self.dataset_metadata, model_metadata=self.model_metadata)
def __init__(self, use_pretrained_weights=True, model_image_shape=(128, 128, 1)): model = PanopticNet('resnet50', input_shape=model_image_shape, norm_method='whole_image', num_semantic_heads=2, num_semantic_classes=[1, 1], location=True, include_top=True, lite=True, interpolation='bilinear') if use_pretrained_weights: weights_path = get_file( os.path.basename(WEIGHTS_PATH), WEIGHTS_PATH, cache_subdir='models', md5_hash='42ca0ebe4b7b0f782eaa4733cdddad88' ) model.load_weights(weights_path, by_name=True) else: weights_path = None super(NuclearSegmentation, self).__init__(model, model_image_shape=model_image_shape, model_mpp=0.65, preprocessing_fn=None, postprocessing_fn=deep_watershed, dataset_metadata=self.dataset_metadata, model_metadata=self.model_metadata)
def __init__(self, use_pretrained_weights=True, model_image_shape=(128, 128, 1)): model = PanopticNet('resnet50', input_shape=model_image_shape, norm_method='whole_image', num_semantic_heads=3, num_semantic_classes=[1, 1, 2], location=True, include_top=True) if use_pretrained_weights: weights_path = get_file( os.path.basename(WEIGHTS_PATH), WEIGHTS_PATH, cache_subdir='models', md5_hash='eb29808ef2f662fb3bcda6986e47f91a') model.load_weights(weights_path) else: weights_path = None super(NuclearSegmentation, self).__init__(model, model_image_shape=model_image_shape, model_mpp=0.65, preprocessing_fn=None, postprocessing_fn=deep_watershed, dataset_metadata=self.dataset_metadata, model_metadata=self.model_metadata)
def __init__(self, use_pretrained_weights=True, model_image_shape=(256, 256, 2)): whole_cell_classes = [1, 1, 2, 3] nuclear_classes = [1, 1, 2, 3] num_semantic_classes = whole_cell_classes + nuclear_classes num_semantic_heads = len(num_semantic_classes) model = PanopticNet('resnet50', input_shape=model_image_shape, norm_method=None, num_semantic_heads=num_semantic_heads, num_semantic_classes=num_semantic_classes, location=True, include_top=True, use_imagenet=False) if use_pretrained_weights: weights_path = get_file( os.path.basename(WEIGHTS_PATH), WEIGHTS_PATH, cache_subdir='models', file_hash='ff24e821c6056cf847e58e8e52916814') model.load_weights(weights_path) else: weights_path = None super(MultiplexSegmentation, self).__init__(model, model_image_shape=model_image_shape, model_mpp=0.5, preprocessing_fn=phase_preprocess, postprocessing_fn=deep_watershed_subcellular, format_model_output_fn=format_output_multiplex, dataset_metadata=self.dataset_metadata, model_metadata=self.model_metadata)