def main():
    direc_data = '/data/npz_data/cells/unspecified_nuclear_data/nuclear_movie/'
    dataset = 'nuclear_movie_same'

    training_data = np.load('{}{}.npz'.format(direc_data, dataset))

    optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    lr_sched = rate_scheduler(lr=0.01, decay=0.99)
    in_shape = (14, 14, 1)
    model = the_model(input_shape=in_shape)  #, n_features=1, reg=1e-5)

    train_model_siamese(
        model=model,
        dataset='nuclear_movie_same',
        optimizer=optimizer,
        expt='',
        it=0,
        batch_size=1,
        n_epoch=100,
        direc_save='/data/models/cells/unspecified_nuclear_data/nuclear_movie',
        direc_data=
        '/data/npz_data/cells/unspecified_nuclear_data/nuclear_movie/',
        lr_sched=lr_sched,
        rotation_range=0,
        flip=True,
        shear=0,
        class_weight=None)
예제 #2
0
# Create output ditrectory, if necessary
pathlib.Path(direc_save).mkdir(parents=True, exist_ok=True)

optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
lr_sched = rate_scheduler(lr=0.01, decay=0.99)

file_name = os.path.join(direc_data, dataset + ".npz")
training_data = np.load(file_name)
class_weights = training_data["class_weights"]

for iterate in range(1):

    model = the_model(batch_shape=(1, 512, 512, 1),
                      n_features=3,
                      reg=1e-5,
                      softmax=True,
                      permute=True)

    train_model(model=model,
                dataset=dataset,
                optimizer=optimizer,
                expt=expt,
                it=iterate,
                batch_size=batch_size,
                n_epoch=n_epoch,
                direc_save=direc_save,
                direc_data=direc_data,
                lr_sched=lr_sched,
                class_weight=class_weights,
                rotation_range=180,
예제 #3
0
n_epoch = 25
data_format = "channels_first"
dataset = "cytoplasm_61x61"
expt = "bn_feature_net_61x61"

direc_save = "/home/davince/Dropbox (OIST)/deepcell-tf-master/trained_networks/20180330_cytoplasm_raw/"
direc_data = "/home/davince/Dropbox (OIST)/deepcell-tf-master/training_data_npz/20180401_newdata_Raw/"

optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
lr_sched = rate_scheduler(lr=0.01, decay=0.99)

class_weights = {0: 1, 1: 1, 2: 1}

for iterate in xrange(3):

    model = the_model(n_channels=1, n_features=3, reg=1e-5)

    train_model(model=model,
                dataset=dataset,
                optimizer=optimizer,
                expt=expt,
                it=iterate,
                batch_size=batch_size,
                n_epoch=n_epoch,
                direc_save=direc_save,
                direc_data=direc_data,
                lr_sched=lr_sched,
                class_weight=class_weights,
                rotation_range=180,
                flip=True,
                shear=False,
direc_data = "/data/training_data_npz/nuclear_movie/"

# Create output ditrectory, if necessary
pathlib.Path(direc_save).mkdir(parents=True, exist_ok=True)

optimizer = SGD(lr=1e-2, decay=1e-6, momentum=0.9, nesterov=True)
lr_sched = rate_scheduler(lr=1e-2, decay=0.99)

file_name = os.path.join(direc_data, dataset + ".npz")
training_data = np.load(file_name)

for iterate in range(1):

    model = the_model(batch_shape=(1, 1, 5, 256, 256),
                      n_features=3,
                      reg=1e-5,
                      location=False,
                      permute=True,
                      softmax=False)

    trained_model = train_model(model=model,
                                dataset=dataset,
                                optimizer=optimizer,
                                expt=expt,
                                it=iterate,
                                batch_size=batch_size,
                                n_epoch=n_epoch,
                                direc_save=direc_save,
                                direc_data=direc_data,
                                number_of_frames=5,
                                lr_sched=lr_sched,
                                rotation_range=180,
예제 #5
0
direc_save = "/data/trained_networks/nuclei/"
direc_data = "/data/training_data_npz/nuclei/"

optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
lr_sched = rate_scheduler(lr=0.01, decay=0.99)

file_name = os.path.join(direc_data, dataset + ".npz")
training_data = np.load(file_name)
class_weights = training_data["class_weights"]

for iterate in xrange(1):

    model = the_model(input_shape=(1, 512, 512),
                      n_features=3,
                      reg=1e-5,
                      softmax=True,
                      permute=True)

    train_model(model=model,
                dataset=dataset,
                optimizer=optimizer,
                expt=expt,
                it=iterate,
                batch_size=batch_size,
                n_epoch=n_epoch,
                direc_save=direc_save,
                direc_data=direc_data,
                lr_sched=lr_sched,
                class_weight=class_weights,
                rotation_range=180,
batch_size = 1
n_epoch = 200

dataset = "nuclei_conv_61x61"
expt = "retina_net"
# 
direc_save = "/data/trained_networks/nuclei/"
direc_data= "/data/training_data_npz/nuclei/"

optimizer = Adam(lr=1e-5, clipnorm=0.001)
# optimizer = SGD(lr = 0.01, momentum = 0.9, nesterov = True)
lr_sched = rate_scheduler(lr = 1e-5, decay = 0.99)
# 
file_name = os.path.join(direc_data, dataset + ".npz")
training_data = np.load(file_name)

for iterate in xrange(1):

	model = the_model(num_classes = 1, input_shape = (1,512,512))

	trained_model = train_model(model = model, dataset = dataset, optimizer = optimizer, 
		expt = expt, it = iterate, batch_size = batch_size, n_epoch = n_epoch,
		direc_save = direc_save, direc_data = direc_data, 
		lr_sched = lr_sched, rotation_range = 0, flip = False, shear = False)





direc_save = "/data/trained_networks/nuclei_broad/"
direc_data = "/data/training_data_npz/nuclei_broad/"

optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
lr_sched = rate_scheduler(lr=0.01, decay=0.99)

file_name = os.path.join(direc_data, dataset + ".npz")
training_data = np.load(file_name)
class_weights = training_data["class_weights"]

for iterate in xrange(1):

    model = the_model(batch_shape=(1, 1, 512, 512),
                      n_features=16,
                      reg=1e-5,
                      softmax=False,
                      location=True,
                      permute=True)

    train_model(model=model,
                dataset=dataset,
                optimizer=optimizer,
                expt=expt,
                it=iterate,
                batch_size=batch_size,
                n_epoch=n_epoch,
                direc_save=direc_save,
                direc_data=direc_data,
                lr_sched=lr_sched,
                class_weight=class_weights,
                rotation_range=180,
# Create output ditrectory, if necessary
pathlib.Path(direc_save).mkdir(parents=True, exist_ok=True)

optimizer = SGD(lr=1e-2, decay=1e-6, momentum=0.9, nesterov=True)
lr_sched = rate_scheduler(lr=1e-2, decay=0.99)

file_name = os.path.join(direc_data, dataset + ".npz")
training_data = np.load(file_name)
class_weights = training_data["class_weights"]
print(class_weights)

for iterate in range(1):

    model = the_model(input_shape=(512, 512, 2),
                      n_features=3,
                      reg=1e-5,
                      location=False,
                      permute=False)

    trained_model = train_model(model=model,
                                dataset=dataset,
                                optimizer=optimizer,
                                expt=expt,
                                it=iterate,
                                batch_size=batch_size,
                                n_epoch=n_epoch,
                                direc_save=direc_save,
                                direc_data=direc_data,
                                lr_sched=lr_sched,
                                class_weight=class_weights,
                                rotation_range=180,
예제 #9
0
direc_save = "/data/trained_networks/HeLa/"
direc_data = "/data/training_data_npz/HeLa/"

optimizer = SGD(lr=1e-2, decay=1e-6, momentum=0.9, nesterov=True)
lr_sched = rate_scheduler(lr=1e-2, decay=0.99)

file_name = os.path.join(direc_data, dataset + ".npz")
training_data = np.load(file_name)
class_weights = training_data["class_weights"]
print(class_weights)

for iterate in xrange(1):

    model = the_model(input_shape=(2, 512, 512),
                      n_features=3,
                      reg=1e-5,
                      permute=True)

    trained_model = train_model(model=model,
                                dataset=dataset,
                                optimizer=optimizer,
                                expt=expt,
                                it=iterate,
                                batch_size=batch_size,
                                n_epoch=n_epoch,
                                direc_save=direc_save,
                                direc_data=direc_data,
                                lr_sched=lr_sched,
                                class_weight=class_weights,
                                rotation_range=180,
                                flip=True,