def build_graph(self): # Build placeholders self.atom_features = Feature(shape=(None, self.n_atom_feat)) self.pair_features = Feature(shape=(None, self.n_pair_feat)) self.atom_split = Feature(shape=(None, ), dtype=tf.int32) self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32) message_passing = MessagePassing(self.T, message_fn='enn', update_fn='gru', n_hidden=self.n_hidden, in_layers=[ self.atom_features, self.pair_features, self.atom_to_pair ]) atom_embeddings = Dense(self.n_hidden, in_layers=[message_passing]) mol_embeddings = SetGather( self.M, self.batch_size, n_hidden=self.n_hidden, in_layers=[atom_embeddings, self.atom_split]) dense1 = Dense(out_channels=2 * self.n_hidden, activation_fn=tf.nn.relu, in_layers=[mol_embeddings]) costs = [] self.labels_fd = [] for task in range(self.n_tasks): if self.mode == "classification": classification = Dense(out_channels=2, activation_fn=None, in_layers=[dense1]) softmax = SoftMax(in_layers=[classification]) self.add_output(softmax) label = Label(shape=(None, 2)) self.labels_fd.append(label) cost = SoftMaxCrossEntropy(in_layers=[label, classification]) costs.append(cost) if self.mode == "regression": regression = Dense(out_channels=1, activation_fn=None, in_layers=[dense1]) self.add_output(regression) label = Label(shape=(None, 1)) self.labels_fd.append(label) cost = L2Loss(in_layers=[label, regression]) costs.append(cost) if self.mode == "classification": all_cost = Concat(in_layers=costs, axis=1) elif self.mode == "regression": all_cost = Stack(in_layers=costs, axis=1) self.weights = Weights(shape=(None, self.n_tasks)) loss = WeightedError(in_layers=[all_cost, self.weights]) self.set_loss(loss)
def test_MP_pickle(): tg = TensorGraph() atom_feature = Feature(shape=(None, 75)) pair_feature = Feature(shape=(None, 14)) atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32) MP = MessagePassing(5, in_layers=[atom_feature, pair_feature, atom_to_pair]) tg.add_output(MP) tg.set_loss(MP) tg.build() tg.save()
def build_graph(self): # Build placeholders self.atom_features = Feature(shape=(None, self.n_atom_feat)) self.pair_features = Feature(shape=(None, self.n_pair_feat)) self.atom_split = Feature(shape=(None, ), dtype=tf.int32) self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32) message_passing = MessagePassing(self.T, message_fn='enn', update_fn='gru', n_hidden=self.n_hidden, in_layers=[ self.atom_features, self.pair_features, self.atom_to_pair ]) atom_embeddings = Dense(self.n_hidden, in_layers=[message_passing]) mol_embeddings = SetGather( self.M, self.batch_size, n_hidden=self.n_hidden, in_layers=[atom_embeddings, self.atom_split]) dense1 = Dense(out_channels=2 * self.n_hidden, activation_fn=tf.nn.relu, in_layers=[mol_embeddings]) n_tasks = self.n_tasks weights = Weights(shape=(None, n_tasks)) if self.mode == 'classification': n_classes = self.n_classes labels = Label(shape=(None, n_tasks, n_classes)) logits = Reshape(shape=(None, n_tasks, n_classes), in_layers=[ Dense(in_layers=dense1, out_channels=n_tasks * n_classes) ]) logits = TrimGraphOutput([logits, weights]) output = SoftMax(logits) self.add_output(output) loss = SoftMaxCrossEntropy(in_layers=[labels, logits]) weighted_loss = WeightedError(in_layers=[loss, weights]) self.set_loss(weighted_loss) else: labels = Label(shape=(None, n_tasks)) output = Reshape( shape=(None, n_tasks), in_layers=[Dense(in_layers=dense1, out_channels=n_tasks)]) output = TrimGraphOutput([output, weights]) self.add_output(output) if self.uncertainty: log_var = Reshape( shape=(None, n_tasks), in_layers=[Dense(in_layers=dense1, out_channels=n_tasks)]) log_var = TrimGraphOutput([log_var, weights]) var = Exp(log_var) self.add_variance(var) diff = labels - output weighted_loss = weights * (diff * diff / var + log_var) weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1])) else: weighted_loss = ReduceSum( L2Loss(in_layers=[labels, output, weights])) self.set_loss(weighted_loss)