def test_softmax_cross_entropy(self): """Test invoking SoftMaxCrossEntropy in eager mode.""" with context.eager_mode(): batch_size = 10 n_features = 5 logits = np.random.rand(batch_size, n_features).astype(np.float32) labels = np.random.rand(batch_size, n_features).astype(np.float32) result = layers.SoftMaxCrossEntropy()(labels, logits) expected = tf.nn.softmax_cross_entropy_with_logits_v2( labels=labels, logits=logits) assert np.allclose(result, expected)
conv2d_1 = layers.Conv2D(num_outputs=32, activation_fn=tf.nn.relu, in_layers=make_image) conv2d_2 = layers.Conv2D(num_outputs=64, activation_fn=tf.nn.relu, in_layers=conv2d_1) flatten = layers.Flatten(in_layers=conv2d_2) dense1 = layers.Dense(out_channels=1024, activation_fn=tf.nn.relu, in_layers=flatten) dense2 = layers.Dense(out_channels=10, activation_fn=None, in_layers=dense1) # Computes the loss for every sample smce = layers.SoftMaxCrossEntropy(in_layers=[label, dense2]) # Average all the losses loss = layers.ReduceMean(in_layers=smce) model.set_loss(loss) # Convert the output from logits to probs output = layers.SoftMax(in_layers=dense2) model.add_output(output) model.fit(train_dataset, nb_epoch=1) # nb_epoch=10 # Use as metric accuracy: the fraction of labels that are correctly predicted metric = dc.metrics.Metric(dc.metrics.accuracy_score) train_scores = model.evaluate(train_dataset, [metric]) test_scores = model.evaluate(test_dataset, [metric])
def create_model(): """ Create our own MNIST model from scratch :return: :rtype: """ mnist = input_data.read_data_sets("MNIST_DATA/", one_hot=True) # the layers from deepchem are the building blocks of what we will use to make our deep learning architecture # now we wrap our dataset into a NumpyDataset train_dataset = dc.data.NumpyDataset(mnist.train.images, mnist.train.labels) test_dataset = dc.data.NumpyDataset(mnist.test.images, mnist.test.labels) # we will create a model that will take an input, add multiple layers, where each layer takes input from the # previous layers. model = dc.models.TensorGraph(model_dir='mnist') # 784 corresponds to an image of size 28 X 28 # 10 corresponds to the fact that there are 10 possible digits (0-9) # the None indicates that we can accept any size input (e.g. an empty array or 500 items each with 784 features) # our data is also categorical so we must one hot encode, set single array element to 1 and the rest to 0 feature = layers.Feature(shape=(None, 784)) labels = layers.Label(shape=(None, 10)) # in order to apply convolutional layers to our input, we convert flat vector of 785 to 28X28 # in_layers means it takes our feature layer as an input make_image = layers.Reshape(shape=(None, 28, 28), in_layers=feature) # now that we have reshaped the input, we pass to convolution layers conv2d_1 = layers.Conv2D(num_outputs=32, activation_fn=tf.nn.relu, in_layers=make_image) conv2d_2 = layers.Conv2D(num_outputs=64, activation_fn=tf.nn.relu, in_layers=conv2d_1) # we want to end by applying fully connected (Dense) layers to the outputs of our convolutional layer # but first, we must flatten the layer from a 2d matrix to a 1d vector flatten = layers.Flatten(in_layers=conv2d_2) dense1 = layers.Dense(out_channels=1024, activation_fn=tf.nn.relu, in_layers=flatten) # note that this is final layer so out_channels of 10 represents the 10 outputs and no activation_fn dense2 = layers.Dense(out_channels=10, activation_fn=None, in_layers=dense1) # next we want to connect this output to a loss function, so we can train the output # compute the value of loss function for every sample then average of all samples to get final loss (ReduceMean) smce = layers.SoftMaxCrossEntropy(in_layers=[labels, dense2]) loss = layers.ReduceMean(in_layers=smce) model.set_loss(loss) # for MNIST we want the probability that a given sample represents one of the 10 digits # we can achieve this using a softmax function to get the probabilities, then cross entropy to get the labels output = layers.SoftMax(in_layers=dense2) model.add_output(output) # if our model takes long to train, reduce nb_epoch to 1 model.fit(train_dataset, nb_epoch=10) # our metric is accuracy, the fraction of labels that are accurately predicted metric = dc.metrics.Metric(dc.metrics.accuracy_score) train_scores = model.evaluate(train_dataset, [metric]) test_scores = model.evaluate(test_dataset, [metric]) print('train_scores', train_scores) print('test_scores', test_scores)