def __init__(self, img_rows=224, img_cols=224, weights="imagenet", classes=1000, **kwargs): super(ResNet50, self).__init__(use_queue=False, **kwargs) self.img_cols = img_cols self.img_rows = img_rows self.weights = weights self.classes = classes input = Feature(shape=(None, self.img_rows, self.img_cols, 3)) labels = Label(shape=(None, self.classes)) conv1 = Conv2D(num_outputs=64, kernel_size=7, stride=2, activation='linear', padding='same', in_layers=[input]) bn1 = BatchNorm(in_layers=[conv1]) ac1 = ReLU(bn1) pool1 = MaxPool2D(ksize=[1, 3, 3, 1], in_layers=[bn1]) cb1 = self.conv_block(pool1, 3, [64, 64, 256], 1) id1 = self.identity_block(cb1, 3, [64, 64, 256]) id1 = self.identity_block(id1, 3, [64, 64, 256]) cb2 = self.conv_block(id1, 3, [128, 128, 512]) id2 = self.identity_block(cb2, 3, [128, 128, 512]) id2 = self.identity_block(id2, 3, [128, 128, 512]) id2 = self.identity_block(id2, 3, [128, 128, 512]) cb3 = self.conv_block(id2, 3, [256, 256, 1024]) id3 = self.identity_block(cb3, 3, [256, 256, 1024]) id3 = self.identity_block(id3, 3, [256, 256, 1024]) id3 = self.identity_block(id3, 3, [256, 256, 1024]) id3 = self.identity_block(cb3, 3, [256, 256, 1024]) id3 = self.identity_block(id3, 3, [256, 256, 1024]) cb4 = self.conv_block(id3, 3, [512, 512, 2048]) id4 = self.identity_block(cb4, 3, [512, 512, 2048]) id4 = self.identity_block(id4, 3, [512, 512, 2048]) pool2 = AvgPool2D(ksize=[1, 7, 7, 1], in_layers=[id4]) flatten = Flatten(in_layers=[pool2]) dense = Dense(classes, in_layers=[flatten]) loss = SoftMaxCrossEntropy(in_layers=[labels, dense]) loss = ReduceMean(in_layers=[loss]) self.set_loss(loss) self.add_output(dense)
def test_avgpool2D(self): """Test that AvgPool2D can be invoked.""" length = 4 width = 4 in_channels = 5 batch_size = 10 in_tensor = np.random.rand(batch_size, length, width, in_channels) with self.session() as sess: in_tensor = tf.convert_to_tensor(in_tensor, dtype=tf.float32) out_tensor = AvgPool2D()(in_tensor) sess.run(tf.global_variables_initializer()) out_tensor = out_tensor.eval() assert out_tensor.shape == (batch_size, 2, 2, in_channels)