def test_cast(self): """Test that layers can automatically reshape inconsistent inputs.""" value1 = np.random.uniform(size=(2, 1)).astype(np.float32) with self.session() as sess: out_tensor = Cast(dtype=tf.int32)(tf.constant(value1)) result = out_tensor.eval() assert result.dtype == np.int32
def test_Cast_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = Cast(in_layers=feature, dtype=tf.int32) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def create_loss(self, layer, label, weight): task_label = Squeeze(squeeze_dims=1, in_layers=[label]) task_label = Cast(dtype=tf.int32, in_layers=[task_label]) task_weight = Squeeze(squeeze_dims=1, in_layers=[weight]) loss = SparseSoftMaxCrossEntropy(in_layers=[task_label, layer]) weighted_loss = WeightedError(in_layers=[loss, task_weight]) return weighted_loss