예제 #1
0
 def test_weight_decay(self):
     """Test that WeightDecay can be invoked."""
     values = np.random.rand(5, 5).astype(np.float32)
     variable = tf.Variable(values)
     with self.session() as sess:
         sess.run(tf.global_variables_initializer())
         cost = WeightDecay(3.0, 'l2')(0.0)
         assert np.allclose(3.0 * np.sum(values * values) / 2, cost.eval())
예제 #2
0
 def test_weight_decay(self):
   """Test that WeightDecay can be invoked."""
   values = np.random.rand(5, 5).astype(np.float32)
   variable = tf.Variable(values)
   with self.session() as sess:
     sess.run(tf.global_variables_initializer())
     cost = WeightDecay(3.0, 'l2')(0.0)
     assert np.allclose(3.0 * np.sum(values * values) / 2, cost.eval())
예제 #3
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=[0.02],
                 bias_init_consts=[1.0],
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=[0.5],
                 n_classes=2,
                 **kwargs):
        """Create a TensorGraphMultiTaskClassifier.

    In addition to the following arguments, this class also accepts all the keywork arguments
    from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes).
    bias_init_consts: list
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes).
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
    n_classes: int
      the number of classes
    """
        super(TensorGraphMultiTaskClassifier,
              self).__init__(mode='classification', **kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        self.n_classes = n_classes

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=tf.nn.relu,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer

        # Compute the loss function for each label.

        output = Reshape(shape=(-1, n_tasks, n_classes),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks * n_classes)
                         ])
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, n_classes))
        weights = Weights(shape=(None, n_tasks))
        loss = SoftMaxCrossEntropy(in_layers=[labels, output])
        weighted_loss = WeightedError(in_layers=[loss, weights])
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
예제 #4
0
파일: fcnet.py 프로젝트: zhshLee/deepchem
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 n_classes=2,
                 **kwargs):
        """Create a MultitaskClassifier.

    In addition to the following arguments, this class also accepts
    all the keyword arguments from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of
      this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight
      initialization of each layer.  The length of this list should
      equal len(layer_sizes).  Alternatively this may be a single
      value instead of a list, in which case the same value is used
      for every layer.
    bias_init_consts: list or loat
      the value to initialize the biases in each layer to.  The
      length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in
      which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    n_classes: int
      the number of classes
    """
        super(MultitaskClassifier, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        self.n_classes = n_classes
        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            weight_init_stddevs = [weight_init_stddevs] * n_layers
        if not isinstance(bias_init_consts, collections.Sequence):
            bias_init_consts = [bias_init_consts] * n_layers
        if not isinstance(dropouts, collections.Sequence):
            dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            activation_fns = [activation_fns] * n_layers

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts,
                activation_fns):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=activation_fn,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer

        # Compute the loss function for each label.
        self.neural_fingerprint = prev_layer

        logits = Reshape(shape=(-1, n_tasks, n_classes),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks * n_classes)
                         ])
        output = SoftMax(logits)
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, n_classes))
        weights = Weights(shape=(None, n_tasks))
        loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
        weighted_loss = WeightedError(in_layers=[loss, weights])
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
예제 #5
0
파일: fcnet.py 프로젝트: zhshLee/deepchem
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 uncertainty=False,
                 **kwargs):
        """Create a MultitaskRegressor.

    In addition to the following arguments, this class also accepts all the keywork arguments
    from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes)+1.  The final element corresponds to the output layer.
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    bias_init_consts: list or float
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes)+1.
      The final element corresponds to the output layer.  Alternatively this may be a single value instead of a list,
      in which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    uncertainty: bool
      if True, include extra outputs and loss terms to enable the uncertainty
      in outputs to be predicted
    """
        super(MultitaskRegressor, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            weight_init_stddevs = [weight_init_stddevs] * (n_layers + 1)
        if not isinstance(bias_init_consts, collections.Sequence):
            bias_init_consts = [bias_init_consts] * (n_layers + 1)
        if not isinstance(dropouts, collections.Sequence):
            dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            activation_fns = [activation_fns] * n_layers
        if uncertainty:
            if any(d == 0.0 for d in dropouts):
                raise ValueError(
                    'Dropout must be included in every layer to predict uncertainty'
                )

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts,
                activation_fns):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=activation_fn,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer
        self.neural_fingerprint = prev_layer

        # Compute the loss function for each label.

        output = Reshape(shape=(-1, n_tasks, 1),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks,
                                   weights_initializer=TFWrapper(
                                       tf.truncated_normal_initializer,
                                       stddev=weight_init_stddevs[-1]),
                                   biases_initializer=TFWrapper(
                                       tf.constant_initializer,
                                       value=bias_init_consts[-1]))
                         ])
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, 1))
        weights = Weights(shape=(None, n_tasks, 1))
        if uncertainty:
            log_var = Reshape(
                shape=(-1, n_tasks, 1),
                in_layers=[
                    Dense(in_layers=[prev_layer],
                          out_channels=n_tasks,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_init_stddevs[-1]),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=0.0))
                ])
            var = Exp(log_var)
            self.add_variance(var)
            diff = labels - output
            weighted_loss = weights * (diff * diff / var + log_var)
            weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1, 2]))
        else:
            weighted_loss = ReduceSum(
                L2Loss(in_layers=[labels, output, weights]))
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
예제 #6
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 bypass_layer_sizes=[100],
                 bypass_weight_init_stddevs=[.02],
                 bypass_bias_init_consts=[1.],
                 bypass_dropouts=[.5],
                 **kwargs):
        """ Create a RobustMultitaskRegressor.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes).  Alternatively this may be a single value instead of a list,
      in which case the same value is used for every layer.
    bias_init_consts: list or loat
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    bypass_layer_sizes: list
      the size of each dense layer in the bypass network. The length of this list determines the number of bypass layers.
    bypass_weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of bypass layers.
      same requirements as weight_init_stddevs
    bypass_bias_init_consts: list or float
      the value to initialize the biases in bypass layers
      same requirements as bias_init_consts
    bypass_dropouts: list or float
      the dropout probablity to use for bypass layers.
      same requirements as dropouts
    """
        super(RobustMultitaskRegressor, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            weight_init_stddevs = [weight_init_stddevs] * n_layers
        if not isinstance(bias_init_consts, collections.Sequence):
            bias_init_consts = [bias_init_consts] * n_layers
        if not isinstance(dropouts, collections.Sequence):
            dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            activation_fns = [activation_fns] * n_layers

        n_bypass_layers = len(bypass_layer_sizes)
        if not isinstance(bypass_weight_init_stddevs, collections.Sequence):
            bypass_weight_init_stddevs = [bypass_weight_init_stddevs
                                          ] * n_bypass_layers
        if not isinstance(bypass_bias_init_consts, collections.Sequence):
            bypass_bias_init_consts = [bypass_bias_init_consts
                                       ] * n_bypass_layers
        if not isinstance(bypass_dropouts, collections.Sequence):
            bypass_dropouts = [bypass_dropouts] * n_bypass_layers
        bypass_activation_fns = [activation_fns[0]] * n_bypass_layers

        # Add the input features.
        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the shared dense layers
        for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts,
                activation_fns):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=activation_fn,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer
        top_multitask_layer = prev_layer

        task_outputs = []
        for i in range(self.n_tasks):
            prev_layer = mol_features
            # Add task-specific bypass layers
            for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                    bypass_layer_sizes, bypass_weight_init_stddevs,
                    bypass_bias_init_consts, bypass_dropouts,
                    bypass_activation_fns):
                layer = Dense(in_layers=[prev_layer],
                              out_channels=size,
                              activation_fn=activation_fn,
                              weights_initializer=TFWrapper(
                                  tf.truncated_normal_initializer,
                                  stddev=weight_stddev),
                              biases_initializer=TFWrapper(
                                  tf.constant_initializer, value=bias_const))
                if dropout > 0.0:
                    layer = Dropout(dropout, in_layers=[layer])
                prev_layer = layer
            top_bypass_layer = prev_layer

            if n_bypass_layers > 0:
                task_layer = Concat(
                    axis=1, in_layers=[top_multitask_layer, top_bypass_layer])
            else:
                task_layer = top_multitask_layer

            task_out = Dense(in_layers=[task_layer], out_channels=1)
            task_outputs.append(task_out)

        output = Concat(axis=1, in_layers=task_outputs)

        self.add_output(output)
        labels = Label(shape=(None, n_tasks))
        weights = Weights(shape=(None, n_tasks))
        weighted_loss = ReduceSum(L2Loss(in_layers=[labels, output, weights]))
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)