def test_CCPM_without_seq(sparse_feature_num, dense_feature_num): model_name = "CCPM" sample_size = SAMPLE_SIZE x, y, feature_dim_dict = get_test_data( sample_size, sparse_feature_num, dense_feature_num, sequence_feature=()) model = CCPM(feature_dim_dict, conv_kernel_width=(3, 2), conv_filters=(2, 1), hidden_size=[32, ], keep_prob=0.5, ) check_model(model, model_name, x, y)
def test_CCPM_without_seq(sparse_feature_num, dense_feature_num): if tf.__version__ >= "2.0.0": return model_name = "CCPM" sample_size = SAMPLE_SIZE x, y, feature_columns = get_test_data(sample_size, sparse_feature_num=sparse_feature_num, dense_feature_num=dense_feature_num, sequence_feature=()) model = CCPM(feature_columns, feature_columns, conv_kernel_width=(3, 2), conv_filters=( 2, 1), dnn_hidden_units=[32, ], dnn_dropout=0.5) check_model(model, model_name, x, y)
def test_CCPM(sparse_feature_num, dense_feature_num): model_name = "CCPM" sample_size = 32 x, y, feature_columns = get_test_data(sample_size, sparse_feature_num, dense_feature_num) model = CCPM(feature_columns, feature_columns, conv_kernel_width=(3, 2), conv_filters=(2, 1), dnn_hidden_units=[ 32, ], dnn_dropout=0.5) check_model(model, model_name, x, y)