def test_PNN_avazu(data, train, test): print("\nTesting PNN on avazu dataset...\n") results_activation_function = {"auc": [], "logloss": [], "rmse": []} results_dropout = {"auc": [], "logloss": [], "rmse": []} results_number_of_neurons = {"auc": [], "logloss": [], "rmse": []} auc = 0 logloss = 0 rmse = 0 features_labels = train.columns sparse_features_labels = features_labels[1:23] target_label = features_labels[0] dnn_feature_columns = [ SparseFeat( feat, vocabulary_size=data[feat].nunique(), embedding_dim=4, ) for feat in sparse_features_labels ] feature_names = get_feature_names(dnn_feature_columns) train_model_input = {name: train[name] for name in feature_names} test_model_input = {name: test[name] for name in feature_names} true_y = test[target_label].values print("\t\t-- ACTIVATION FUNCTIONS --\t\t") for dnn_activation in dnn_activation_list: print("\nTesting {dnn_activation}...".format( dnn_activation=dnn_activation)) # model = PNN(dnn_feature_columns, use_inner=False, use_outter=True, dnn_activation = dnn_activation, task='binary') model = PNN(dnn_feature_columns, use_inner=True, use_outter=False, dnn_activation=dnn_activation, task='binary') model.compile( "adam", "binary_crossentropy", metrics=['binary_crossentropy'], ) model.fit( train_model_input, train[target_label].values, batch_size=256, epochs=10, verbose=0, validation_split=TEST_PROPORTION, ) pred_y = model.predict(test_model_input, batch_size=256) auc = compute_auc(true_y, pred_y) logloss = compute_log_loss(true_y, pred_y) rmse = compute_rmse(true_y, pred_y) results_activation_function["auc"].append(auc) results_activation_function["logloss"].append(logloss) results_activation_function["rmse"].append(rmse) print("\t\t-- DROPOUT RATES --\t\t") for dnn_dropout in dnn_dropout_list: print("\nTesting {dnn_dropout}...".format(dnn_dropout=dnn_dropout)) # model = PNN(dnn_feature_columns, use_inner=False, use_outter=True, dnn_dropout = dnn_dropout, task='binary') model = PNN(dnn_feature_columns, use_inner=True, use_outter=False, dnn_dropout=dnn_dropout, task='binary') model.compile( "adam", "binary_crossentropy", metrics=['binary_crossentropy'], ) model.fit( train_model_input, train[target_label].values, batch_size=256, epochs=10, verbose=0, validation_split=TEST_PROPORTION, ) pred_y = model.predict(test_model_input, batch_size=256) auc = compute_auc(true_y, pred_y) logloss = compute_log_loss(true_y, pred_y) rmse = compute_rmse(true_y, pred_y) results_dropout["auc"].append(auc) results_dropout["logloss"].append(logloss) results_dropout["rmse"].append(rmse) print("\t\t-- HIDDEN UNITS --\t\t") for dnn_hidden_units in dnn_hidden_units_list: print("\nTesting {dnn_hidden_units}...".format( dnn_hidden_units=dnn_hidden_units)) # model = PNN(dnn_feature_columns, use_inner=False, use_outter=True, dnn_hidden_units = dnn_hidden_units, task='binary') model = PNN(dnn_feature_columns, use_inner=True, use_outter=False, dnn_hidden_units=dnn_hidden_units, task='binary') model.compile( "adam", "binary_crossentropy", metrics=['binary_crossentropy'], ) model.fit(train_model_input, train[target_label].values, batch_size=256, epochs=10, verbose=0, validation_split=TEST_PROPORTION) pred_y = model.predict(test_model_input, batch_size=256) auc = compute_auc(true_y, pred_y) logloss = compute_log_loss(true_y, pred_y) rmse = compute_rmse(true_y, pred_y) results_number_of_neurons["auc"].append(auc) results_number_of_neurons["logloss"].append(logloss) results_number_of_neurons["rmse"].append(rmse) if PLOT: # create_plots("OPNN", "avazu", results_activation_function, "Activation Function", "activation_func", dnn_activation_list) # create_plots("OPNN", "avazu", results_dropout, "Dropout Rate", "dropout", dnn_dropout_list) # create_plots("OPNN", "avazu", results_number_of_neurons, "Number of Neurons per layer", "nr_neurons", dnn_hidden_units_list) create_plots("PNN", "avazu", results_activation_function, "Activation Function", "activation_func", dnn_activation_list) create_plots("PNN", "avazu", results_dropout, "Dropout Rate", "dropout", dnn_dropout_list) create_plots("PNN", "avazu", results_number_of_neurons, "Number of Neurons per layer", "nr_neurons", dnn_hidden_units_list)
linear_feature_columns = fixlen_feature_columns feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns) # 3.generate input data for model # train, test = train_test_split(data, test_size=0.2) print("Spltting dataset into train and test sets...\n") train, test = train_test_split(data, test_size=0.2) # train, test = train_test_split(data_ohe, test_size=0.2) train_model_input = {name:train[name] for name in feature_names} test_model_input = {name:test[name] for name in feature_names} # 4.Define Model,train,predict and evaluate print("Defining PNN model...\n") model = PNN(dnn_feature_columns, task='binary') print("Compiling PNN model...\n") model.compile("adam", "binary_crossentropy", metrics=['binary_crossentropy'], ) print("Training the model...\n") model.fit(train_model_input, train[target].values, batch_size=256, epochs=10, verbose=1, validation_split=0.2, ) print("\nTesting the model...\n") pred = model.predict(test_model_input, batch_size=256) print("test LogLoss", round(log_loss(test[target].values, pred), 4)) print("test AUC", round(roc_auc_score(test[target].values, pred), 4)) print("\nProgram ended in {time}".format(time = datetime.now() - start_time))