예제 #1
0
from deephyper.benchmark import HpProblem

Problem = HpProblem()
Problem.add_dim('epochs', (5, 500))
Problem.add_dim('nunits_l1', (1, 1000))
Problem.add_dim('nunits_l2', (1, 1000))
Problem.add_dim('activation_l1', ['relu', 'elu', 'selu', 'tanh'])
Problem.add_dim('activation_l2', ['relu', 'elu', 'selu', 'tanh'])
Problem.add_dim('batch_size', (8, 1024))
Problem.add_dim('dropout_l1', (0.0, 1.0))
Problem.add_dim('dropout_l2', (0.0, 1.0))


Problem.add_starting_point(
    epochs=5,
    nunits_l1=1,
    nunits_l2=2,
    activation_l1='relu',
    activation_l2='relu',
    batch_size=8,
    dropout_l1=0.0,
    dropout_l2=0.0)


if __name__ == '__main__':
    print(Problem)
예제 #2
0
from deephyper.benchmark import HpProblem

# import os
# import sys

# sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from torch_wrapper import use_knl  # noqa

Problem = HpProblem()
Problem.add_dim("batch_size", (1, 32))
Problem.add_dim("image_size", [32])
Problem.add_dim("conv1_in_chan", [3])
Problem.add_dim("conv1_out_chan", (3, 64))
Problem.add_dim("conv1_kern", (3, 8))
# Problem.add_dim("pool_size", [2])
hp = Problem.add_dim("pool_size", [2])
print(hp)
Problem.add_dim("conv2_out_chan", (3, 64))
Problem.add_dim("conv2_kern", (3, 8))
# Problem.add_dim("fc1_out", (64, 256))
# Problem.add_dim("fc2_out", (32, 128))
Problem.add_dim("fc1_out", (64, 16384))
Problem.add_dim("fc2_out", (32, 16384))
Problem.add_dim("fc3_out", [10])

if use_knl:
    # Problem.add_dim("omp_num_threads", (8, 64))
    Problem.add_dim("omp_num_threads", [64])
    Problem.add_starting_point(
        batch_size=10,
        image_size=32,
예제 #3
0
from deephyper.benchmark import HpProblem

Problem = HpProblem()

sp = {}

# Problem.add_dim("lr", (0.0009, 0.1))

for i in range(1, 18):
    Problem.add_dim(f"u{i}", (32, 128))
    Problem.add_dim(f"a{i}", [None, "relu", "sigmoid", "tanh"])

    sp[f"u{i}"] = 64
    sp[f"a{i}"] = "relu"
Problem.add_starting_point(**sp)
Problem.add_starting_point(
    **{
        "a1": None,
        "a10": "relu",
        "a11": "relu",
        "a12": "tanh",
        "a13": "tanh",
        "a14": "tanh",
        "a15": "relu",
        "a16": "relu",
        "a17": "tanh",
        "a2": "sigmoid",
        "a3": None,
        "a4": "sigmoid",
        "a5": "tanh",
        "a6": None,
예제 #4
0
from deephyper.benchmark import HpProblem

Problem = HpProblem()
Problem.add_dim('epochs', (5,30), default=5)
Problem.add_dim('rnn_type', ['LSTM', 'GRU', 'SimpleRNN'], default='LSTM')
Problem.add_dim('nhidden', (1, 100), default=1)

#network parameters
Problem.add_dim('activation', ['relu', 'elu', 'selu', 'tanh'], default='relu')
Problem.add_dim('batch_size', (8, 1024), default=8)
Problem.add_dim('dropout', (0.0, 1.0), default=0.0)
Problem.add_dim('optimizer', ['sgd', 'rmsprop', 'adagrad', 'adadelta', 'adam', 'adamax', 'nadam'], default='sgd')

# common optimizer parameters
Problem.add_dim('learning_rate', (1e-04, 1e01), default=1e-4)

if __name__ == '__main__':
    print(Problem)
from deephyper.benchmark import HpProblem

Problem = HpProblem()
Problem.add_dim('batch_size', (1, 8192))
Problem.add_dim('in_features', (128, 8192))
Problem.add_dim('out_features', (128, 8192))
Problem.add_dim('omp_num_threads', (8, 64))
Problem.add_dim('bias', [0, 1])

Problem.add_starting_point(batch_size=128,
                           in_features=1024,
                           out_features=512,
                           omp_num_threads=64,
                           bias=0)

if __name__ == '__main__':
    print(Problem)
예제 #6
0
from deephyper.benchmark import HpProblem

# import os
# import sys

# sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from torch_wrapper import use_knl  # noqa

Problem = HpProblem()
Problem.add_dim("batch_size", (1, 1024))
Problem.add_dim("image_size", (32, 64))
Problem.add_dim("in_channels", (2, 8))
Problem.add_dim("out_channels", (2, 16))
Problem.add_dim("kernel_size", (2, 4))

if use_knl:
    # KGF: unlike 1D and 3D conv*/ problems, not restricted to 64 threads:
    Problem.add_dim("omp_num_threads", (8, 64))
    Problem.add_starting_point(
        batch_size=128,
        image_size=32,
        in_channels=2,
        out_channels=2,
        kernel_size=2,
        omp_num_threads=64,
    )
else:
    Problem.add_starting_point(batch_size=128,
                               image_size=32,
                               in_channels=2,
                               out_channels=2,
예제 #7
0
from deephyper.benchmark import HpProblem

# import os
# import sys

# sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from torch_wrapper import use_knl  # noqa

Problem = HpProblem()
Problem.add_dim("batch_size", (1, 8192))
Problem.add_dim("in_features", (128, 8192))
Problem.add_dim("out_features", (128, 8192))
Problem.add_dim("bias", [0, 1])

if use_knl:
    Problem.add_dim("omp_num_threads", (8, 64))
    Problem.add_starting_point(batch_size=128,
                               in_features=1024,
                               out_features=512,
                               bias=0,
                               omp_num_threads=64)
else:
    Problem.add_starting_point(batch_size=128,
                               in_features=1024,
                               out_features=512,
                               bias=0)

if __name__ == "__main__":
    print(Problem)
예제 #8
0
from deephyper.benchmark import HpProblem
Problem = HpProblem()

Problem.add_dim('log2_batch_size', (5, 10), 7)
Problem.add_dim('nunits_1', (10, 100), 100)
Problem.add_dim('nunits_2', (10, 30), 20)
Problem.add_dim('dropout_1', (0.0, 1.0), 0.2)
Problem.add_dim('dropout_2', (0.0, 1.0), 0.2)
Problem.add_dim('optimizer_type', ['RMSprop', 'Adam'], 'RMSprop')
예제 #9
0
from deephyper.benchmark import HpProblem

Problem = HpProblem()
Problem.add_dim('epochs', (5, 500), 5)
# benchmark specific parameters
Problem.add_dim('rnn_type', ['LSTM', 'GRU', 'SimpleRNN'], 'LSTM')
Problem.add_dim('embed_hidden_size', (1, 100), 1)
Problem.add_dim('sent_hidden_size', (1, 100), 1)
Problem.add_dim('query_hidden_size', (1, 100), 1)
# network parameters
Problem.add_dim('activation', ['relu', 'elu', 'selu', 'tanh'], 'relu')
Problem.add_dim('batch_size', (8, 1024), 8)
Problem.add_dim('dropout', (0.0, 1.0), 0.0)
Problem.add_dim(
    'optimizer',
    ['sgd', 'rmsprop', 'adagrad', 'adadelta', 'adam', 'adamax', 'nadam'],
    'sgd')
# common optimizer parameters
#space['clipnorm'] = (1e-04, 1e01)
#space['clipvalue'] = (1e-04, 1e01)
# optimizer parameters
Problem.add_dim('learning_rate', (1e-04, 1e01), 1e-04)
#space['momentum'] =  (0, 1e01)
#space['decay'] =  (0, 1e01)
#space['nesterov'] = [False, True]
#space['rho'] = (1e-04, 1e01)
#space['epsilon'] = (1e-08, 1e01)
#space['beta1'] = (1e-04, 1e01)
#space['beta2'] = (1e-04, 1e01)

if __name__ == '__main__':
예제 #10
0
from deephyper.benchmark import HpProblem

# import os
# import sys

# sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from torch_wrapper import use_knl  # noqa

Problem = HpProblem()
Problem.add_dim("batch_size", (1, 1024))
Problem.add_dim("seq_length", (128, 1024))
Problem.add_dim("in_features", (128, 1024))
Problem.add_dim("hidden_units", (128, 1024))
Problem.add_dim("num_layers", (1, 2))
# Problem.add_dim("out_features", (128, 8192))
Problem.add_dim("bias", [0, 1])

if use_knl:
    Problem.add_dim("omp_num_threads", (8, 64))
    Problem.add_starting_point(
        batch_size=128,
        seq_length=512,
        in_features=1024,
        hidden_units=512,
        num_layers=1,
        bias=0,
        omp_num_threads=64,
    )
else:
    Problem.add_starting_point(
        batch_size=128,
예제 #11
0
from deephyper.benchmark import HpProblem

Problem = HpProblem()
Problem.add_dim('batch_size', (1, 1024))
Problem.add_dim('image_size', (128, 1024))
Problem.add_dim('in_channels', (2, 64))
Problem.add_dim('out_channels', (2, 64))
Problem.add_dim('kernel_size', (2, 16))
Problem.add_dim('omp_num_threads', (8, 64))

Problem.add_starting_point(batch_size=10,
                           image_size=128,
                           in_channels=2,
                           out_channels=2,
                           kernel_size=2,
                           omp_num_threads=64)

if __name__ == '__main__':
    print(Problem)
예제 #12
0
from deephyper.benchmark import HpProblem

# import os
# import sys

# sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from torch_wrapper import use_knl  # noqa

Problem = HpProblem()
Problem.add_dim("batch_size", (1, 512))
Problem.add_dim("height", (128, 1024))
Problem.add_dim("width", (128, 1024))
Problem.add_dim("in_channels", (2, 64))
Problem.add_dim("out_channels", (2, 64))
Problem.add_dim("kernel_size", (2, 16))

if use_knl:
    # KGF: unlike 1D and 3D conv*/ problems, not restricted to 64 threads:
    Problem.add_dim("omp_num_threads", (8, 64))
    Problem.add_starting_point(
        batch_size=128,
        height=512,
        width=512,
        in_channels=3,
        out_channels=64,
        kernel_size=3,
        omp_num_threads=64,
    )
else:
    Problem.add_starting_point(
        batch_size=128,
예제 #13
0
from deephyper.benchmark import HpProblem

Problem = HpProblem()

Problem.add_dim('units', (1, 100))
Problem.add_dim('activation', [None, 'relu', 'sigmoid', 'tanh'])
Problem.add_dim('lr', (0.0001, 1.))

Problem.add_starting_point(units=10, activation=None, lr=0.01)

if __name__ == '__main__':
    print(Problem)
예제 #14
0
from deephyper.benchmark import HpProblem

Problem = HpProblem()
Problem.add_dim('batch_size', (1, 4096))
Problem.add_dim('image_size', (128, 8192))
Problem.add_dim('in_channels', (2, 1024))
Problem.add_dim('out_channels', (2, 1024))
Problem.add_dim('kernel_size', (2, 64))
Problem.add_dim('omp_num_threads', [64])

Problem.add_starting_point(batch_size=10,
                           image_size=128,
                           in_channels=2,
                           out_channels=2,
                           kernel_size=2,
                           omp_num_threads=64)

if __name__ == '__main__':
    print(Problem)
예제 #15
0
from deephyper.benchmark import HpProblem

Problem = HpProblem()
Problem.add_dim('batch_size', (1, 512))
Problem.add_dim('height', (128, 1024))
Problem.add_dim('width', (128, 1024))
Problem.add_dim('in_channels', (2, 64))
Problem.add_dim('out_channels', (2, 64))
Problem.add_dim('kernel_size', (2, 16))
Problem.add_dim('omp_num_threads', (8, 64))

Problem.add_starting_point(batch_size=128,
                           height=512,
                           width=512,
                           in_channels=3,
                           out_channels=64,
                           kernel_size=3,
                           omp_num_threads=64)

if __name__ == '__main__':
    print(Problem)
예제 #16
0
from deephyper.benchmark import HpProblem

Problem = HpProblem()
Problem.add_dim('epochs', (5, 500), 5)

# benchmark specific parameters
Problem.add_dim('nhidden', (1, 100), 1)
Problem.add_dim('nunits', (1, 1000), 1)

# network parameters
Problem.add_dim('activation', ['relu', 'elu', 'selu', 'tanh'], 'relu')
Problem.add_dim('batch_size', (8, 1024), 8)
Problem.add_dim('dropout', (0.0, 1.0), 0.0)
Problem.add_dim(
    'optimizer',
    ['sgd', 'rmsprop', 'adagrad', 'adadelta', 'adam', 'adamax', 'nadam'],
    'sgd')

# common optimizer parameters
#Problem.add_dim(['clipnorm'] = (1e-04, 1e01)
#Problem.add_dim(['clipvalue'] = (1e-04, 1e01)
# optimizer parameters
Problem.add_dim('learning_rate', (1e-04, 1e01), 1e-04)
#Problem.add_dim(['momentum'] =  (0, 1e01)
#Problem.add_dim(['decay'] =  (0, 1e01)
#Problem.add_dim(['nesterov'] = [False, True]
#Problem.add_dim(['rho'] = (1e-04, 1e01)
#Problem.add_dim(['epsilon'] = (1e-08, 1e01)
#Problem.add_dim(['beta1'] = (1e-04, 1e01)
#Problem.add_dim(['beta2'] = (1e-04, 1e01)
예제 #17
0
from deephyper.benchmark import HpProblem

# import os
# import sys

# sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from torch_wrapper import use_knl  # noqa

Problem = HpProblem()

Problem.add_dim("batch_size", (1, 64))
Problem.add_dim("image_size", (16, 128))
Problem.add_dim("in_channels", (2, 64))
Problem.add_dim("out_channels", (2, 64))
Problem.add_dim("kernel_size", (2, 10))

if use_knl:
    Problem.add_dim("omp_num_threads", [64])
    # Problem.add_dim("omp_num_threads", (8, 64))
    Problem.add_starting_point(
        batch_size=10,
        image_size=28,
        in_channels=2,
        out_channels=2,
        kernel_size=2,
        omp_num_threads=64,
    )
else:
    Problem.add_starting_point(
        batch_size=10, image_size=28, in_channels=2, out_channels=2, kernel_size=2
    )
예제 #18
0
# some_file.py
import sys
# insert at 1, 0 is the script path (or '' in REPL)
sys.path.insert(1, '/home/yzamora/perf_pred/deephyper_repo/deephyper/')

from deephyper.benchmark import HpProblem

Problem = HpProblem()
#Width of hidden layers
Problem.add_dim('nunits', (1, 1000))
Problem.add_dim('depth', (1,20))
#Problem.add_dim('nunits_l2', (1, 1000))
Problem.add_dim('activation', ['relu', 'elu', 'selu', 'tanh'])
Problem.add_dim('batch_size', (8, 100))
#Problem.add_dim('dropout_l1', (0.0, 1.0))
#Problem.add_dim('dropout_l2', (0.0, 1.0))


Problem.add_starting_point(
    nunits=1,
    activation='relu',
    batch_size=8,
    depth=1
    )


if __name__ == '__main__':
    print(Problem) 
예제 #19
0
from deephyper.benchmark import HpProblem

# import os
# import sys

# sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from torch_wrapper import use_knl  # noqa

Problem = HpProblem()
Problem.add_dim("batch_size", (1, 4096))
Problem.add_dim("image_size", (128, 8192))
Problem.add_dim("in_channels", (2, 1024))
Problem.add_dim("out_channels", (2, 1024))
Problem.add_dim("kernel_size", (2, 64))

if use_knl:
    # Problem.add_dim("omp_num_threads", (8, 64))
    Problem.add_dim("omp_num_threads", [64])
    Problem.add_starting_point(
        batch_size=10,
        image_size=128,
        in_channels=2,
        out_channels=2,
        kernel_size=2,
        omp_num_threads=64,
    )
else:
    Problem.add_starting_point(batch_size=10,
                               image_size=128,
                               in_channels=2,
                               out_channels=2,
예제 #20
0
import os

import numpy as np

from deephyper.benchmark import HpProblem
from deephyper.benchmark.benchmark_functions_wrappers import polynome_2

# Problem definition
Problem = HpProblem()

num_dim = 10
for i in range(num_dim):
    Problem.add_dim(f'e{i}', (-10.0, 10.0))

Problem.add_starting_point(**{f'e{i}': 10.0 for i in range(num_dim)})

# Definition of the function which runs the model


def run(param_dict):
    f, _, _ = polynome_2()

    num_dim = 10
    x = np.array([param_dict[f'e{i}'] for i in range(num_dim)])

    return f(x)  # the objective


if __name__ == '__main__':
    print(Problem)
예제 #21
0
from deephyper.benchmark import HpProblem

Problem = HpProblem()
Problem.add_dim('batch_size', (1, 32))
Problem.add_dim('image_size', [32])
Problem.add_dim('conv1_in_chan', [3])
Problem.add_dim('conv1_out_chan', (3, 64))
Problem.add_dim('conv1_kern', (3, 8))
Problem.add_dim('pool_size', [2])
Problem.add_dim('conv2_out_chan', (3, 64))
Problem.add_dim('conv2_kern', (3, 8))
Problem.add_dim('fc1_out', (64, 16384))
Problem.add_dim('fc2_out', (32, 16384))
Problem.add_dim('fc3_out', [10])
Problem.add_dim('omp_num_threads', [64])

Problem.add_starting_point(batch_size=10,
                           image_size=32,
                           conv1_in_chan=3,
                           conv1_out_chan=16,
                           conv1_kern=5,
                           pool_size=2,
                           conv2_out_chan=16,
                           conv2_kern=5,
                           fc1_out=128,
                           fc2_out=84,
                           fc3_out=10,
                           omp_num_threads=64)

if __name__ == '__main__':
    print(Problem)
예제 #22
0
import random
from deephyper.benchmark import HpProblem
NDIM = 2

Problem = HpProblem()
def_values = [random.uniform(-3.0, 4.0) for i in range(NDIM)]
for i, startVal in enumerate(def_values, 1):
    dim = f"x{i}"
    Problem.add_dim(dim, (-3.0, 4.0), default=startVal)
예제 #23
0
from deephyper.benchmark import HpProblem

Problem = HpProblem()
Problem.add_dim('batch_size', (1, 64))
Problem.add_dim('image_size', (16, 128))
Problem.add_dim('in_channels', (2, 64))
Problem.add_dim('out_channels', (2, 64))
Problem.add_dim('kernel_size', (2, 10))
Problem.add_dim('omp_num_threads', [64])

Problem.add_starting_point(batch_size=10,
                           image_size=28,
                           in_channels=2,
                           out_channels=2,
                           kernel_size=2,
                           omp_num_threads=64)

if __name__ == '__main__':
    print(Problem)
예제 #24
0
import os

import numpy as np

from deephyper.benchmark import HpProblem
from deephyper.benchmark.benchmark_functions_wrappers import polynome_2

# Problem definition
Problem = HpProblem()

num_dim = 10
for i in range(num_dim):
    Problem.add_dim(f'e{i}', (-10, 10), i)


# Definition of the function which runs the model
def run(param_dict):
    f, (a, b), _ = polynome_2()

    num_dim = 10
    x = np.array([param_dict[f'e{i}'] for i in range(num_dim)])

    return f(x)  # the objective


if __name__ == '__main__':
    print(Problem)