def create_search_space( input_shape=(116, ), output_shape=(116, ), *args, **kwargs): arch = AutoKArchitecture(input_shape, output_shape, regression=True) source = prev_input = arch.input_nodes[0] # look over skip connections within a range of 3 nodes anchor_points = collections.deque([source], maxlen=3) num_layers = 10 for _ in range(num_layers): vnode = VariableNode() add_dense_to_(vnode) arch.connect(prev_input, vnode) # * Cell output cell_output = vnode cmerge = ConstantNode() cmerge.set_op(AddByProjecting(arch, [cell_output], activation='relu')) for anchor in anchor_points: skipco = VariableNode() skipco.add_op(Tensor([])) skipco.add_op(Connect(arch, anchor)) arch.connect(skipco, cmerge) # ! for next iter prev_input = cmerge anchor_points.append(prev_input) return arch
def __init__(self, input_shape, output_shape, *args, **kwargs): super().__init__() if type(input_shape) is tuple: # we have only one input tensor here op = Tensor(keras.layers.Input(input_shape, name="input_0")) self.input_nodes = [ConstantNode(op=op, name='Input_0')] elif type(input_shape) is list and all(map(lambda x: type(x) is tuple, input_shape)): # we have a list of input tensors here self.input_nodes = list() for i in range(len(input_shape)): op = Tensor(keras.layers.Input( input_shape[i], name=f"input_{i}")) inode = ConstantNode(op=op, name=f'Input_{i}') self.input_nodes.append(inode) else: raise InputShapeOfWrongType(input_shape) for node in self.input_nodes: self.graph.add_node(node) self.output_shape = output_shape self.output_node = None self._model = None
def create_cell_1(input_nodes): """Create a cell with convolution. Args: input_nodes (list(Node)): a list of input_nodes for this cell. Returns: Cell: the corresponding cell. """ cell = Cell(input_nodes) def create_conv_block(input_nodes): # first node of block n1 = VariableNode('N1') for inpt in input_nodes: n1.add_op(Connect(cell.graph, inpt, n1)) def create_conv_node(name): n = VariableNode(name) n.add_op(Identity()) n.add_op(Conv1D(filter_size=3, num_filters=16)) n.add_op(MaxPooling1D(pool_size=3, padding='same')) n.add_op(Dense(10, tf.nn.relu)) n.add_op(Conv1D(filter_size=5, num_filters=16)) n.add_op(MaxPooling1D(pool_size=5, padding='same')) n.add_op(Dense(100, tf.nn.relu)) n.add_op(Conv1D(filter_size=10, num_filters=16)) n.add_op(MaxPooling1D(pool_size=10, padding='same')) n.add_op(Dense(1000, tf.nn.relu)) return n # second node of block n2 = create_conv_node('N2') n3 = create_conv_node('N3') block = Block() block.add_node(n1) block.add_node(n2) block.add_node(n3) block.add_edge(n1, n2) block.add_edge(n2, n3) return block block1 = create_conv_block(input_nodes) block2 = create_conv_block(input_nodes) block3 = create_conv_block(input_nodes) cell.add_block(block1) cell.add_block(block2) cell.add_block(block3) addNode = ConstantNode(name='Cell_out') addNode.set_op(AddByPadding(cell.graph, addNode, cell.get_blocks_output())) cell.set_outputs(node=addNode) return cell
def create_search_space_old( input_shape=(2, ), output_shape=(5, ), *args, **kwargs): ss = AutoKSearchSpace(input_shape, output_shape, regression=True) prev = ss.input_nodes[0] for _ in range(3): cn = ConstantNode(Dense(10, "relu")) ss.connect(prev, cn) prev = cn cn = ConstantNode(Dense(5)) ss.connect(prev, cn) return ss
def set_outputs(self, node=None): """Set output node of the current cell. node (Node, optional): Defaults to None will create a Concatenation node for the last axis. """ if node is None: stacked_nodes = self.get_blocks_output() output_node = ConstantNode(name=f'Cell_{self.num}_Output') output_node.set_op( Concatenate(self.graph, output_node, stacked_nodes)) else: output_node = node self.output = output_node
def create_structure(input_shape=[(2, ), (2, ), (2, )], output_shape=(1, ), *args, **kwargs): network = KerasStructure(input_shape, output_shape) input_nodes = network.input_nodes cell1 = create_cell_1(input_nodes) network.add_cell(cell1) cell2 = create_cell_2([cell1.output]) network.add_cell(cell2) cell3 = Cell(input_nodes + [cell1.output] + [cell2.output]) cnode = VariableNode(name='SkipCo') nullNode = ConstantNode(op=Tensor([]), name='None') cnode.add_op(Connect(cell3.graph, nullNode, cnode)) # SAME cnode.add_op(Connect(cell3.graph, input_nodes[0], cnode)) cnode.add_op(Connect(cell3.graph, input_nodes[1], cnode)) cnode.add_op(Connect(cell3.graph, input_nodes[2], cnode)) cnode.add_op(Connect(cell3.graph, cell1.output, cnode)) cnode.add_op(Connect(cell3.graph, cell2.output, cnode)) # SAME cnode.add_op(Connect(cell3.graph, input_nodes, cnode)) cnode.add_op(Connect(cell3.graph, [input_nodes[0], input_nodes[1]], cnode)) cnode.add_op(Connect(cell3.graph, [input_nodes[1], input_nodes[2]], cnode)) cnode.add_op(Connect(cell3.graph, [input_nodes[0], input_nodes[2]], cnode)) block = Block() block.add_node(cnode) cell3.add_block(block) network.add_cell(cell3) return network
def create_search_space( input_shape=(100, ), output_shape=[(1), (100, )], num_layers=5, **kwargs): struct = KSearchSpace(input_shape, output_shape) inp = struct.input_nodes[0] # auto-encoder units = [128, 64, 32, 16, 8, 16, 32, 64, 128] # units = [32, 16, 32] prev_node = inp d = 1 for i in range(len(units)): vnode = VariableNode() vnode.add_op(Identity()) if d == 1 and units[i] < units[i + 1]: d = -1 # print(min(1, units[i]), ' - ', max(1, units[i])+1) for u in range(min(2, units[i]), max(2, units[i]) + 1, 2): vnode.add_op(Dense(u, tf.nn.relu)) latente_space = vnode else: # print(min(units[i], units[i+d]), ' - ', max(units[i], units[i+d])+1) for u in range(min(units[i], units[i + d]), max(units[i], units[i + d]) + 1, 2): vnode.add_op(Dense(u, tf.nn.relu)) struct.connect(prev_node, vnode) prev_node = vnode out2 = ConstantNode(op=Dense(100, name="output_1")) struct.connect(prev_node, out2) # regressor prev_node = latente_space # prev_node = inp for _ in range(num_layers): vnode = VariableNode() for i in range(16, 129, 16): vnode.add_op(Dense(i, tf.nn.relu)) struct.connect(prev_node, vnode) prev_node = vnode out1 = ConstantNode(op=Dense(1, name="output_0")) struct.connect(prev_node, out1) return struct
def create_search_space(input_shape=( 8, 5, ), output_shape=( 8, 5, ), num_layers=10, *args, **kwargs): arch = KSearchSpace(input_shape, output_shape, regression=True) source = prev_input = arch.input_nodes[0] # look over skip connections within a range of the 2 previous nodes anchor_points = collections.deque([source], maxlen=2) for _ in range(num_layers): vnode = VariableNode() add_lstm_seq_(vnode) arch.connect(prev_input, vnode) # * Cell output cell_output = vnode cmerge = ConstantNode() cmerge.set_op(AddByProjecting(arch, [cell_output], activation='relu')) # cmerge.set_op(Concatenate(arch, [cell_output])) for anchor in anchor_points: skipco = VariableNode() skipco.add_op(Tensor([])) skipco.add_op(Connect(arch, anchor)) arch.connect(skipco, cmerge) # ! for next iter prev_input = cmerge anchor_points.append(prev_input) # prev_input = cell_output cnode = ConstantNode() add_lstm_oplayer_(cnode, 5) arch.connect(prev_input, cnode) return arch
def test_create_multiple_inputs_with_one_vnode(self): from deephyper.search.nas.model.space import KSearchSpace from deephyper.search.nas.model.space.node import VariableNode, ConstantNode from deephyper.search.nas.model.space.op.op1d import Dense from deephyper.search.nas.model.space.op.merge import Concatenate struct = KSearchSpace([(5, ), (5, )], (1, )) merge = ConstantNode() merge.set_op(Concatenate(struct, struct.input_nodes)) vnode1 = VariableNode() struct.connect(merge, vnode1) vnode1.add_op(Dense(1)) struct.set_ops([0]) struct.create_model()
def create_mlp_block(cell, input_node): # first node of block n1 = ConstantNode(op=Dense(1000, tf.nn.relu), name='N1') cell.graph.add_edge(input_node, n1) # fixed input of current block # second node of block n2 = ConstantNode(op=Dense(1000, tf.nn.relu), name='N2') n3 = ConstantNode(op=Dense(1000, tf.nn.relu), name='N3') block = Block() block.add_node(n1) block.add_node(n2) block.add_node(n3) block.add_edge(n1, n2) block.add_edge(n2, n3) return block
def create_structure(input_shape=(2, ), output_shape=(1, ), *args, **kwargs): struct = AutoOutputStructure(input_shape, output_shape, regression=False) n1 = VariableNode('N') add_conv_op_(n1) struct.connect(struct.input_nodes[0], n1) n2 = VariableNode('N') add_activation_op_(n2) struct.connect(n1, n2) n3 = VariableNode('N') add_pooling_op_(n3) struct.connect(n2, n3) n4 = VariableNode('N') add_conv_op_(n4) struct.connect(n3, n4) n5 = VariableNode('N') add_activation_op_(n5) struct.connect(n4, n5) n6 = VariableNode('N') add_pooling_op_(n6) struct.connect(n5, n6) n7 = ConstantNode(op=Flatten(), name='N') struct.connect(n6, n7) n8 = VariableNode('N') add_dense_op_(n8) struct.connect(n7, n8) n9 = VariableNode('N') add_activation_op_(n9) struct.connect(n8, n9) n10 = VariableNode('N') add_dropout_op_(n10) struct.connect(n9, n10) n11 = VariableNode('N') add_dense_op_(n11) struct.connect(n10, n11) n12 = VariableNode('N') add_activation_op_(n12) struct.connect(n11, n12) n13 = VariableNode('N') add_dropout_op_(n13) struct.connect(n12, n13) return struct
def create_search_space( input_shape=[(10,), (10,)], output_shape=(10,), num_layers=10, *args, **kwargs ): ss = KSearchSpace(input_shape, output_shape) input1 = ss.input_nodes[0] input2 = ss.input_nodes[1] output_nodes = [] for source = prev_input = arch.input_nodes[0] # look over skip connections within a range of the 3 previous nodes anchor_points = collections.deque([source], maxlen=3) for _ in range(num_layers): vnode = VariableNode() add_dense_to_(vnode) arch.connect(prev_input, vnode) # * Cell output cell_output = vnode cmerge = ConstantNode() cmerge.set_op(AddByProjecting(arch, [cell_output], activation="relu")) for anchor in anchor_points: skipco = VariableNode() skipco.add_op(Tensor([])) skipco.add_op(Connect(arch, anchor)) arch.connect(skipco, cmerge) # ! for next iter prev_input = cmerge anchor_points.append(prev_input) return arch
def set_ops(self, indexes): """ Set the operations for each node of each cell of the structure. Args: indexes (list): element of list can be float in [0, 1] or int. output_node (ConstantNode): the output node of the Structure. """ cursor = 0 for c in self.struct: num_nodes = c.num_nodes c.set_ops(indexes[cursor:cursor + num_nodes]) cursor += num_nodes self.graph.add_nodes_from(c.graph.nodes()) self.graph.add_edges_from(c.graph.edges()) output_nodes = get_output_nodes(self.graph) if len(output_nodes) == 1: node = ConstantNode(op=Identity(), name='Structure_Output') self.graph.add_node(node) self.graph.add_edge(output_nodes[0], node) else: node = ConstantNode(name='Structure_Output') node.set_op(self.output_op(self.graph, node, output_nodes)) self.output_node = node
def create_structure(input_shape=[(2,), (2,), (2,)], output_shape=(1,), num_cell=8, *args, **kwargs): # , output_op=AddByPadding) network = KerasStructure(input_shape, output_shape) input_nodes = network.input_nodes # CELL 1 cell1 = create_cell_1(input_nodes) network.add_cell(cell1) # CELL Middle inputs_skipco = [input_nodes, input_nodes[0], input_nodes[1], input_nodes[2], cell1.output] pred_cell = cell1 n = num_cell for i in range(n): cell_i = Cell(input_nodes + [cell1.output]) block1 = create_mlp_block(cell_i, pred_cell.output) cell_i.add_block(block1) cnode = VariableNode(name='SkipCo') nullNode = ConstantNode(op=Tensor([]), name='None') cnode.add_op(Connect(cell_i.graph, nullNode, cnode)) # SAME for inpt in inputs_skipco: cnode.add_op(Connect(cell_i.graph, inpt, cnode)) block2 = Block() block2.add_node(cnode) cell_i.add_block(block2) # set_cell_output_add(cell2) cell_i.set_outputs() network.add_cell(cell_i) # prep. for next iter inputs_skipco.append(cell_i.output) pred_cell = cell_i # CELL LAST cell_last = Cell([pred_cell.output]) block1 = create_mlp_block(cell_last, pred_cell.output) cell_last.add_block(block1) # set_cell_output_add(cell3) cell_last.set_outputs() network.add_cell(cell_last) return network
def __init__(self, input_shape, output_shape, output_op=None, *args, **kwargs): self.graph = nx.DiGraph() if type(input_shape) is tuple: # we have only one input tensor here op = Tensor(keras.layers.Input(input_shape, name="input_0")) self.input_nodes = [ConstantNode(op=op, name='Input_0')] elif type(input_shape) is list and all( map(lambda x: type(x) is tuple, input_shape)): # we have a list of input tensors here self.input_nodes = list() for i in range(len(input_shape)): op = Tensor( keras.layers.Input(input_shape[i], name=f"input_{i}")) inode = ConstantNode(op=op, name=f'Input_{i}') self.input_nodes.append(inode) else: raise RuntimeError( f"input_shape must be either of type 'tuple' or 'list(tuple)' but is of type '{type(input_shape)}'!" ) self.__output_shape = output_shape self.output_node = None self.output_op = Concatenate if output_op is None else output_op self.struct = [] self.map_sh2int = {} self._model = None
def create_structure(input_shape=[(2, ), (2, ), (2, )], output_shape=(1, ), *args, **kwargs): # , output_op=AddByPadding) network = KerasStructure(input_shape, output_shape) input_nodes = network.input_nodes # CELL 1 cell1 = create_cell_1(input_nodes) network.add_cell(cell1) # CELL 2 cell2 = Cell(input_nodes + [cell1.output]) block1 = create_mlp_block(cell2, cell1.output) cell2.add_block(block1) cnode = VariableNode(name='SkipCo') nullNode = ConstantNode(op=Tensor([]), name='None') cnode.add_op(Connect(cell2.graph, nullNode, cnode)) # SAME cnode.add_op(Connect(cell2.graph, input_nodes[0], cnode)) cnode.add_op(Connect(cell2.graph, input_nodes[1], cnode)) cnode.add_op(Connect(cell2.graph, input_nodes[2], cnode)) cnode.add_op(Connect(cell2.graph, cell1.output, cnode)) cnode.add_op(Connect(cell2.graph, input_nodes, cnode)) cnode.add_op(Connect(cell2.graph, [input_nodes[0], input_nodes[1]], cnode)) cnode.add_op(Connect(cell2.graph, [input_nodes[1], input_nodes[2]], cnode)) cnode.add_op(Connect(cell2.graph, [input_nodes[0], input_nodes[2]], cnode)) block2 = Block() block2.add_node(cnode) cell2.add_block(block2) # set_cell_output_add(cell2) cell2.set_outputs() network.add_cell(cell2) # CELL 3 cell3 = Cell([cell2.output]) block1 = create_mlp_block(cell3, cell2.output) cell3.add_block(block1) # set_cell_output_add(cell3) cell3.set_outputs() network.add_cell(cell3) return network
def create_structure(input_shape=[(1, ), (942, ), (5270, ), (2048, )], output_shape=(1,), num_cells=2, *args, **kwargs): struct = AutoOutputStructure(input_shape, output_shape, regression=True) input_nodes = struct.input_nodes output_submodels = [input_nodes[0]] for i in range(1, 4): vnode1 = VariableNode('N1') add_mlp_op_(vnode1) struct.connect(input_nodes[i], vnode1) vnode2 = VariableNode('N2') add_mlp_op_(vnode2) struct.connect(vnode1, vnode2) vnode3 = VariableNode('N3') add_mlp_op_(vnode3) struct.connect(vnode2, vnode3) output_submodels.append(vnode3) merge1 = ConstantNode(name='Merge') merge1.set_op(Concatenate(struct, merge1, output_submodels)) vnode4 = VariableNode('N4') add_mlp_op_(vnode4) struct.connect(merge1, vnode4) prev = vnode4 for i in range(num_cells): vnode = VariableNode(f'N{i+1}') add_mlp_op_(vnode) struct.connect(prev, vnode) merge = ConstantNode(name='Merge') merge.set_op(AddByPadding(struct, merge, [vnode, prev])) prev = merge return struct
def create_search_space( input_shape=(2, ), output_shape=(3, ), *args, **kwargs): ss = KSearchSpace(input_shape, output_shape) x = ss.input_nodes[0] out_xor = ConstantNode(op=Dense(1), name="XOR") ss.connect(x, out_xor) out_and = ConstantNode(op=Dense(1), name="AND") ss.connect(x, out_and) out_or = ConstantNode(op=Dense(1), name="OR") ss.connect(x, out_or) out = ConstantNode(name="OUT") out.set_op(Concatenate(ss, stacked_nodes=[out_xor, out_and, out_or])) return ss
def create_search_space(input_shape=(2,), output_shape=(3,), *args, **kwargs): ss = KSearchSpace(input_shape, output_shape) x = ss.input_nodes[0] # z = ConstantNode(op=Dense(4, activation="relu"), name="Z") # ss.connect(x, z) # x = z out_xor = ConstantNode(op=Dense(1, activation="sigmoid"), name="out_XOR") out_and = ConstantNode(op=Dense(1, activation="sigmoid"), name="out_AND") out_or = ConstantNode(op=Dense(1, activation="sigmoid"), name="out_OR") in_xor = VariableNode(name="in_XOR") in_xor.add_op(Concatenate(ss, [x])) # 0 in_xor.add_op(Concatenate(ss, [x, out_and])) # 1 in_xor.add_op(Concatenate(ss, [x, out_or])) # 2 in_xor.add_op(Concatenate(ss, [x, out_and, out_or])) # 3 ss.connect(in_xor, out_xor) in_and = VariableNode(name="in_AND") in_and.add_op(Concatenate(ss, [x])) in_and.add_op(Concatenate(ss, [x, out_xor])) in_and.add_op(Concatenate(ss, [x, out_or])) in_and.add_op(Concatenate(ss, [x, out_xor, out_or])) ss.connect(in_and, out_and) in_or = VariableNode(name="in_OR") in_or.add_op(Concatenate(ss, [x])) in_or.add_op(Concatenate(ss, [x, out_xor])) in_or.add_op(Concatenate(ss, [x, out_and])) in_or.add_op(Concatenate(ss, [x, out_xor, out_and])) ss.connect(in_or, out_or) out = ConstantNode(name="OUT") out.set_op(Concatenate(ss, stacked_nodes=[out_xor, out_and, out_or])) return ss
def set_output_node(self, graph, output_nodes): """Set the output node of the search_space. Args: graph (nx.DiGraph): graph of the search_space. output_nodes (Node): nodes of the current search_space without successors. Returns: Node: output node of the search_space. """ if len(output_nodes) == 1: node = ConstantNode(op=Identity(), name='Structure_Output') graph.add_node(node) graph.add_edge(output_nodes[0], node) else: node = ConstantNode(name='Structure_Output') op = Concatenate(self, output_nodes) node.set_op(op=op) return node
def create_cell_1(input_nodes): """Create a cell with convolution. Args: input_nodes (list(Node)): a list of input_nodes for this cell. Returns: Cell: the corresponding cell. """ cell = Cell(input_nodes) def create_block(input_node): def add_mlp_ops_to(vnode): # REG_L1 = 1. # REG_L2 = 1. vnode.add_op(Identity()) vnode.add_op(Dense(100, tf.nn.relu)) vnode.add_op(Dense(100, tf.nn.tanh)) vnode.add_op(Dense(100, tf.nn.sigmoid)) vnode.add_op(Dropout(0.05)) vnode.add_op(Dense(500, tf.nn.relu)) vnode.add_op(Dense(500, tf.nn.tanh)) vnode.add_op(Dense(500, tf.nn.sigmoid)) vnode.add_op(Dropout(0.1)) vnode.add_op(Dense(1000, tf.nn.relu)) vnode.add_op(Dense(1000, tf.nn.tanh)) vnode.add_op(Dense(1000, tf.nn.sigmoid)) vnode.add_op(Dropout(0.2)) # first node of block n1 = VariableNode('N1') add_mlp_ops_to(n1) cell.graph.add_edge(input_node, n1) # fixed input of current block # second node of block n2 = VariableNode('N2') add_mlp_ops_to(n2) # third node of the block n3 = VariableNode('N3') add_mlp_ops_to(n3) block = Block() block.add_node(n1) block.add_node(n2) block.add_node(n3) block.add_edge(n1, n2) block.add_edge(n2, n3) return block, (n1, n2, n3) block1, _ = create_block(input_nodes[0]) block2, (vn1, vn2, vn3) = create_block(input_nodes[1]) # first node of block m_vn1 = MirrorNode(node=vn1) cell.graph.add_edge(input_nodes[2], m_vn1) # fixed input of current block # second node of block m_vn2 = MirrorNode(node=vn2) # third node of the block m_vn3 = MirrorNode(node=vn3) block3 = Block() block3.add_node(m_vn1) block3.add_node(m_vn2) block3.add_node(m_vn3) block3.add_edge(m_vn1, m_vn2) block3.add_edge(m_vn2, m_vn3) cell.add_block(block1) cell.add_block(block2) cell.add_block(block3) addNode = ConstantNode(name='Merging') addNode.set_op(AddByPadding(cell.graph, addNode, cell.get_blocks_output())) cell.set_outputs(node=addNode) return cell
def create_search_space( input_shape=(2, ), output_shape=(5, ), *args, **kwargs): ss = KSearchSpace(input_shape, output_shape) x = ss.input_nodes[0] nunits = 10 hid_2 = ConstantNode(op=Dense(nunits, "relu"), name="hid_2") out_2 = ConstantNode(op=Dense(1), name="out_2") ss.connect(hid_2, out_2) hid_3 = ConstantNode(op=Dense(nunits, "relu"), name="hid_3") out_3 = ConstantNode(op=Dense(1), name="out_3") ss.connect(hid_3, out_3) hid_4 = ConstantNode(op=Dense(nunits, "relu"), name="hid_4") out_4 = ConstantNode(op=Dense(1), name="out_4") ss.connect(hid_4, out_4) hid_5 = ConstantNode(op=Dense(nunits, "relu"), name="hid_5") out_5 = ConstantNode(op=Dense(1), name="out_5") ss.connect(hid_5, out_5) hid_6 = ConstantNode(op=Dense(nunits, "relu"), name="hid_6") out_6 = ConstantNode(op=Dense(1), name="out_6") ss.connect(hid_6, out_6) # L1 DEPENDENT ON DATA OVERALL in_2 = VariableNode(name="in_2") in_2.add_op(Concatenate(ss, [x])) in_2.add_op(Concatenate(ss, [x, out_3])) in_2.add_op(Concatenate(ss, [x, out_4])) in_2.add_op(Concatenate(ss, [x, out_5])) in_2.add_op(Concatenate(ss, [x, out_6])) ss.connect(in_2, hid_2) # L2 DEPENDANT ON DATA, L1 AND L3 in_3 = VariableNode(name="in_3") in_3.add_op(Concatenate(ss, [x, out_2])) in_3.add_op(Concatenate(ss, [x, out_4])) ss.connect(in_3, hid_3) # L3 DEPENDANT ON DATA, L1 L2 AND WIDTH in_4 = VariableNode(name="in_4") in_4.add_op(Concatenate(ss, [x])) in_4.add_op(Concatenate(ss, [x, out_2])) in_4.add_op(Concatenate(ss, [x, out_3])) in_4.add_op(Concatenate(ss, [x, out_5])) in_4.add_op(Concatenate(ss, [x, out_6])) in_4.add_op(Concatenate(ss, [x, out_2, out_3])) in_4.add_op(Concatenate(ss, [x, out_2, out_5])) in_4.add_op(Concatenate(ss, [x, out_2, out_6])) in_4.add_op(Concatenate(ss, [x, out_3, out_5])) in_4.add_op(Concatenate(ss, [x, out_3, out_6])) in_4.add_op(Concatenate(ss, [x, out_5, out_6])) in_4.add_op(Concatenate(ss, [x, out_3, out_5, out_6])) in_4.add_op(Concatenate(ss, [x, out_2, out_5, out_6])) in_4.add_op(Concatenate(ss, [x, out_2, out_3, out_6])) in_4.add_op(Concatenate(ss, [x, out_2, out_3, out_5])) in_4.add_op(Concatenate(ss, [x, out_2, out_3, out_5, out_6])) ss.connect(in_4, hid_4) # HEIGHT DEPENDANT ON ALL MEASURES COMBINED AND DATA in_5 = VariableNode(name="in_5") in_5.add_op(Concatenate(ss, [x])) in_5.add_op(Concatenate(ss, [x, out_2])) in_5.add_op(Concatenate(ss, [x, out_3])) in_5.add_op(Concatenate(ss, [x, out_4])) in_5.add_op(Concatenate(ss, [x, out_6])) in_5.add_op(Concatenate(ss, [x, out_2, out_3])) in_5.add_op(Concatenate(ss, [x, out_2, out_4])) in_5.add_op(Concatenate(ss, [x, out_2, out_6])) in_5.add_op(Concatenate(ss, [x, out_3, out_4])) in_5.add_op(Concatenate(ss, [x, out_3, out_6])) in_5.add_op(Concatenate(ss, [x, out_4, out_6])) in_5.add_op(Concatenate(ss, [x, out_3, out_4, out_6])) in_5.add_op(Concatenate(ss, [x, out_2, out_4, out_6])) in_5.add_op(Concatenate(ss, [x, out_2, out_3, out_6])) in_5.add_op(Concatenate(ss, [x, out_2, out_3, out_4])) in_5.add_op(Concatenate(ss, [x, out_2, out_3, out_4, out_6])) ss.connect(in_5, hid_5) # WIDTH DEPENDANT ON DATA AND CROSS SECTION in_6 = VariableNode(name="in_6") in_6.add_op(Concatenate(ss, [x])) in_6.add_op(Concatenate(ss, [x, out_2])) in_6.add_op(Concatenate(ss, [x, out_3])) in_6.add_op(Concatenate(ss, [x, out_4])) in_6.add_op(Concatenate(ss, [x, out_5])) ss.connect(in_6, hid_6) out = ConstantNode(name="OUT") out.set_op( Concatenate(ss, stacked_nodes=[out_2, out_3, out_4, out_5, out_6])) return ss
def create_search_space(input_shape=None, output_shape=None, num_mpnn_cells=3, num_dense_layers=2, **kwargs): """Create a search space containing multiple Keras architectures Args: input_shape (list): the input shapes, e.g. [(3, 4), (5, 2)]. output_shape (tuple): the output shape, e.g. (12, ). num_mpnn_cells (int): the number of MPNN cells. num_dense_layers (int): the number of Dense layers. Returns: A search space containing multiple Keras architectures """ data = kwargs['data'] if data == 'qm7': input_shape = [(8 + 1, 75), (8 + 1 + 10 + 1, 2), (8 + 1 + 10 + 1, 14), (8 + 1, ), (8 + 1 + 10 + 1, )] output_shape = (1, ) elif data == 'qm8': input_shape = [(9 + 1, 75), (9 + 1 + 14 + 1, 2), (9 + 1 + 14 + 1, 14), (9 + 1, ), (9 + 1 + 14 + 1, )] output_shape = (16, ) elif data == 'qm9': input_shape = [(9 + 1, 75), (9 + 1 + 16 + 1, 2), (9 + 1 + 16 + 1, 14), (9 + 1, ), (9 + 1 + 16 + 1, )] output_shape = (12, ) elif data == 'freesolv': input_shape = [(24 + 1, 75), (24 + 1 + 25 + 1, 2), (24 + 1 + 25 + 1, 14), (24 + 1, ), (24 + 1 + 25 + 1, )] output_shape = (1, ) elif data == 'esol': input_shape = [(55 + 1, 75), (55 + 1 + 68 + 1, 2), (55 + 1 + 68 + 1, 14), (55 + 1, ), (55 + 1 + 68 + 1, )] output_shape = (1, ) elif data == 'lipo': input_shape = [(115 + 1, 75), (115 + 1 + 236 + 1, 2), (115 + 1 + 236 + 1, 14), (115 + 1, ), (115 + 1 + 236 + 1, )] output_shape = (1, ) arch = KSearchSpace(input_shape, output_shape, regression=True) source = prev_input = arch.input_nodes[0] prev_input1 = arch.input_nodes[1] prev_input2 = arch.input_nodes[2] prev_input3 = arch.input_nodes[3] prev_input4 = arch.input_nodes[4] # look over skip connections within a range of the 3 previous nodes anchor_points = collections.deque([source], maxlen=3) count_gcn_layers = 0 count_dense_layers = 0 for _ in range(num_mpnn_cells): graph_attn_cell = VariableNode() mpnn_cell(graph_attn_cell) # arch.connect(prev_input, graph_attn_cell) arch.connect(prev_input1, graph_attn_cell) arch.connect(prev_input2, graph_attn_cell) arch.connect(prev_input3, graph_attn_cell) arch.connect(prev_input4, graph_attn_cell) cell_output = graph_attn_cell cmerge = ConstantNode() cmerge.set_op(AddByProjecting(arch, [cell_output], activation="relu")) for anchor in anchor_points: skipco = VariableNode() skipco.add_op(Tensor([])) skipco.add_op(Connect(arch, anchor)) arch.connect(skipco, cmerge) prev_input = cmerge anchor_points.append(prev_input) count_gcn_layers += 1 global_pooling_node = VariableNode() gather_cell(global_pooling_node) arch.connect(prev_input, global_pooling_node) prev_input = global_pooling_node flatten_node = ConstantNode() flatten_node.set_op(Flatten()) arch.connect(prev_input, flatten_node) prev_input = flatten_node for _ in range(num_dense_layers): dense_node = ConstantNode() dense_node.set_op(Dense(32, activation='relu')) arch.connect(prev_input, dense_node) prev_input = dense_node count_dense_layers += 1 output_node = ConstantNode() output_node.set_op(Dense(output_shape[0], activation='linear')) arch.connect(prev_input, output_node) return arch
def create_structure(input_shape=(2, ), output_shape=(1, ), *args, **kwargs): struct = AutoOutputStructure(input_shape, output_shape, regression=False) n1 = ConstantNode(op=Conv1D(filter_size=20, num_filters=128), name='N') struct.connect(struct.input_nodes[0], n1) n2 = ConstantNode(op=Activation(activation='relu'), name='N') struct.connect(n1, n2) n3 = ConstantNode(op=MaxPooling1D(pool_size=1, padding='same'), name='N') struct.connect(n2, n3) n4 = ConstantNode(op=Conv1D(filter_size=10, num_filters=128), name='N') struct.connect(n3, n4) n5 = ConstantNode(op=Activation(activation='relu'), name='N') struct.connect(n4, n5) n6 = ConstantNode(op=MaxPooling1D(pool_size=10, padding='same'), name='N') struct.connect(n5, n6) n7 = ConstantNode(op=Flatten(), name='N') struct.connect(n6, n7) n8 = ConstantNode(op=Dense(units=200), name='N') struct.connect(n7, n8) n9 = ConstantNode(op=Activation(activation='relu'), name='N') struct.connect(n8, n9) n10 = ConstantNode(op=Dropout(rate=0.1), name='N') struct.connect(n9, n10) n11 = ConstantNode(op=Dense(units=20), name='N') struct.connect(n10, n11) n12 = ConstantNode(op=Activation(activation='relu'), name='N') struct.connect(n11, n12) n13 = ConstantNode(op=Dropout(rate=0.1), name='N') struct.connect(n12, n13) return struct
def create_search_space(input_shape = None, output_shape = None, num_mpnn_layers=3, num_dense_layers=2, **kwargs): """ A function to create keras search sapce Args: input_shape: list of tuples output_shape: a tuple num_mpnn_layers: int, number of graph massage passing neural network layers num_dense_layers: int, number of dense layers **kwargs: data: str, the dataset name Returns: arch: keras architecture """ data = kwargs['data'] if data == 'qm7': input_shape = [(9+1, 75), (9+1+16+1, 2), (9+1+16+1, 14), (9+1, ), (9+1+16+1, )] output_shape = (1, ) arch = KSearchSpace(input_shape, output_shape, regression=True) source = prev_input = arch.input_nodes[0] prev_input1 = arch.input_nodes[1] prev_input2 = arch.input_nodes[2] prev_input3 = arch.input_nodes[3] prev_input4 = arch.input_nodes[4] # look over skip connections within a range of the 3 previous nodes anchor_points = collections.deque([source], maxlen=3) count_mpnn_layers = 0 count_dense_layers = 0 for _ in range(num_mpnn_layers): graph_attn_cell = VariableNode() add_mpnn_to_(graph_attn_cell) # arch.connect(prev_input, graph_attn_cell) arch.connect(prev_input1, graph_attn_cell) arch.connect(prev_input2, graph_attn_cell) arch.connect(prev_input3, graph_attn_cell) arch.connect(prev_input4, graph_attn_cell) cell_output = graph_attn_cell cmerge = ConstantNode() cmerge.set_op(AddByProjecting(arch, [cell_output], activation="relu")) for anchor in anchor_points: skipco = VariableNode() skipco.add_op(Tensor([])) skipco.add_op(Connect(arch, anchor)) arch.connect(skipco, cmerge) prev_input = cmerge anchor_points.append(prev_input) count_mpnn_layers += 1 global_pooling_node = VariableNode() add_global_pooling_to_(global_pooling_node) arch.connect(prev_input, global_pooling_node) # result from graph conv (?, 23, ?) --> Global pooling (?, 23) prev_input = global_pooling_node flatten_node = ConstantNode() flatten_node.set_op(Flatten()) arch.connect(prev_input, flatten_node) # result from graph conv (?, 23) --> Flatten prev_input = flatten_node for _ in range(num_dense_layers): dense_node = ConstantNode() dense_node.set_op(Dense(32, activation='relu')) arch.connect(prev_input, dense_node) prev_input = dense_node count_dense_layers += 1 output_node = ConstantNode() output_node.set_op(Dense(output_shape[0], activation='linear')) arch.connect(prev_input, output_node) return arch
def create_structure(input_shape=[(1, ), (942, ), (5270, ), (2048, )], output_shape=(1, ), num_cells=2, *args, **kwargs): struct = AutoOutputStructure(input_shape, output_shape, regression=True) input_nodes = struct.input_nodes output_submodels = [input_nodes[0]] for i in range(1, 4): cnode1 = ConstantNode(name='N', op=Dense(1000, tf.nn.relu)) struct.connect(input_nodes[i], cnode1) cnode2 = ConstantNode(name='N', op=Dense(1000, tf.nn.relu)) struct.connect(cnode1, cnode2) cnode3 = ConstantNode(name='N', op=Dense(1000, tf.nn.relu)) struct.connect(cnode2, cnode3) output_submodels.append(cnode3) merge1 = ConstantNode(name='Merge') merge1.set_op(Concatenate(struct, merge1, output_submodels)) cnode4 = ConstantNode(name='N', op=Dense(1000, tf.nn.relu)) struct.connect(merge1, cnode4) prev = cnode4 for i in range(num_cells): cnode = ConstantNode(name='N', op=Dense(1000, tf.nn.relu)) struct.connect(prev, cnode) merge = ConstantNode(name='Merge') merge.set_op(AddByPadding(struct, merge, [cnode, prev])) prev = merge return struct