예제 #1
0
def test_space_api():
    space = Space([(0.0, 1.0), (-5, 5), ("a", "b", "c"),
                   (1.0, 5.0, "log-uniform"), ("e", "f")])

    cat_space = Space([(1, "r"), (1.0, "r")])
    assert isinstance(cat_space.dimensions[0], Categorical)
    assert isinstance(cat_space.dimensions[1], Categorical)

    assert_equal(len(space.dimensions), 5)
    assert isinstance(space.dimensions[0], Real)
    assert isinstance(space.dimensions[1], Integer)
    assert isinstance(space.dimensions[2], Categorical)
    assert isinstance(space.dimensions[3], Real)
    assert isinstance(space.dimensions[4], Categorical)

    samples = space.rvs(n_samples=10, random_state=0)
    assert_equal(len(samples), 10)
    assert_equal(len(samples[0]), 5)

    assert isinstance(samples, list)
    for n in range(4):
        assert isinstance(samples[n], list)

    assert isinstance(samples[0][0], numbers.Real)
    assert isinstance(samples[0][1], numbers.Integral)
    assert isinstance(samples[0][2], str)
    assert isinstance(samples[0][3], numbers.Real)
    assert isinstance(samples[0][4], str)

    samples_transformed = space.transform(samples)
    assert_equal(samples_transformed.shape[0], len(samples))
    assert_equal(samples_transformed.shape[1], 1 + 1 + 3 + 1 + 1)

    # our space contains mixed types, this means we can't use
    # `array_allclose` or similar to check points are close after a round-trip
    # of transformations
    for orig, round_trip in zip(samples,
                                space.inverse_transform(samples_transformed)):
        assert space.distance(orig, round_trip) < 1.0e-8

    samples = space.inverse_transform(samples_transformed)
    assert isinstance(samples[0][0], numbers.Real)
    assert isinstance(samples[0][1], numbers.Integral)
    assert isinstance(samples[0][2], str)
    assert isinstance(samples[0][3], numbers.Real)
    assert isinstance(samples[0][4], str)

    for b1, b2 in zip(
            space.bounds,
        [
            (0.0, 1.0),
            (-5, 5),
            np.asarray(["a", "b", "c"]),
            (1.0, 5.0),
            np.asarray(["e", "f"]),
        ],
    ):
        assert_array_equal(b1, b2)

    for b1, b2 in zip(
            space.transformed_bounds,
        [
            (0.0, 1.0),
            (-5, 5),
            (0.0, 1.0),
            (0.0, 1.0),
            (0.0, 1.0),
            (np.log10(1.0), np.log10(5.0)),
            (0.0, 1.0),
        ],
    ):
        assert_array_equal(b1, b2)
예제 #2
0
def test_space_consistency():
    # Reals (uniform)

    s1 = Space([Real(0.0, 1.0)])
    s2 = Space([Real(0.0, 1.0)])
    s3 = Space([Real(0, 1)])
    s4 = Space([(0.0, 1.0)])
    s5 = Space([(0.0, 1.0, "uniform")])
    s6 = Space([(0, 1.0)])
    s7 = Space([(np.float64(0.0), 1.0)])
    s8 = Space([(0, np.float64(1.0))])
    a1 = s1.rvs(n_samples=10, random_state=0)
    a2 = s2.rvs(n_samples=10, random_state=0)
    a3 = s3.rvs(n_samples=10, random_state=0)
    a4 = s4.rvs(n_samples=10, random_state=0)
    a5 = s5.rvs(n_samples=10, random_state=0)
    assert_equal(s1, s2)
    assert_equal(s1, s3)
    assert_equal(s1, s4)
    assert_equal(s1, s5)
    assert_equal(s1, s6)
    assert_equal(s1, s7)
    assert_equal(s1, s8)
    assert_array_equal(a1, a2)
    assert_array_equal(a1, a3)
    assert_array_equal(a1, a4)
    assert_array_equal(a1, a5)

    # Reals (log-uniform)
    s1 = Space([Real(10**-3.0, 10**3.0, prior="log-uniform", base=10)])
    s2 = Space([Real(10**-3.0, 10**3.0, prior="log-uniform", base=10)])
    s3 = Space([Real(10**-3, 10**3, prior="log-uniform", base=10)])
    s4 = Space([(10**-3.0, 10**3.0, "log-uniform", 10)])
    s5 = Space([(np.float64(10**-3.0), 10**3.0, "log-uniform", 10)])
    a1 = s1.rvs(n_samples=10, random_state=0)
    a2 = s2.rvs(n_samples=10, random_state=0)
    a3 = s3.rvs(n_samples=10, random_state=0)
    a4 = s4.rvs(n_samples=10, random_state=0)
    assert_equal(s1, s2)
    assert_equal(s1, s3)
    assert_equal(s1, s4)
    assert_equal(s1, s5)
    assert_array_equal(a1, a2)
    assert_array_equal(a1, a3)
    assert_array_equal(a1, a4)

    # Integers
    s1 = Space([Integer(1, 5)])
    s2 = Space([Integer(1.0, 5.0)])
    s3 = Space([(1, 5)])
    s4 = Space([(np.int64(1.0), 5)])
    s5 = Space([(1, np.int64(5.0))])
    a1 = s1.rvs(n_samples=10, random_state=0)
    a2 = s2.rvs(n_samples=10, random_state=0)
    a3 = s3.rvs(n_samples=10, random_state=0)
    assert_equal(s1, s2)
    assert_equal(s1, s3)
    assert_equal(s1, s4)
    assert_equal(s1, s5)
    assert_array_equal(a1, a2)
    assert_array_equal(a1, a3)

    # Integers (log-uniform)
    s1 = Space([Integer(16, 512, prior="log-uniform", base=2)])
    s2 = Space([Integer(16.0, 512.0, prior="log-uniform", base=2)])
    s3 = Space([(16, 512, "log-uniform", 2)])
    s4 = Space([(np.int64(16.0), 512, "log-uniform", 2)])
    s5 = Space([(16, np.int64(512.0), "log-uniform", 2)])
    a1 = s1.rvs(n_samples=10, random_state=0)
    a2 = s2.rvs(n_samples=10, random_state=0)
    a3 = s3.rvs(n_samples=10, random_state=0)
    assert_equal(s1, s2)
    assert_equal(s1, s3)
    assert_equal(s1, s4)
    assert_equal(s1, s5)
    assert_array_equal(a1, a2)
    assert_array_equal(a1, a3)

    # Categoricals
    s1 = Space([Categorical(["a", "b", "c"])])
    s2 = Space([Categorical(["a", "b", "c"])])
    s3 = Space([["a", "b", "c"]])
    a1 = s1.rvs(n_samples=10, random_state=0)
    a2 = s2.rvs(n_samples=10, random_state=0)
    a3 = s3.rvs(n_samples=10, random_state=0)
    assert_equal(s1, s2)
    assert_array_equal(a1, a2)
    assert_equal(s1, s3)
    assert_array_equal(a1, a3)

    s1 = Space([(True, False)])
    s2 = Space([Categorical([True, False])])
    s3 = Space([np.array([True, False])])
    assert s1 == s2 == s3

    # Categoricals Integer
    s1 = Space([Categorical([1, 2, 3])])
    s2 = Space([Categorical([1, 2, 3])])
    s3 = Space([[1, 2, 3]])
    a1 = s1.rvs(n_samples=10, random_state=0)
    a2 = s2.rvs(n_samples=10, random_state=0)
    a3 = s3.rvs(n_samples=10, random_state=0)
    assert_equal(s1, s2)
    assert_array_equal(a1, a2)
    assert_equal(s1, s3)
    assert_array_equal(a1, a3)

    s1 = Space([(True, False)])
    s2 = Space([Categorical([True, False])])
    s3 = Space([np.array([True, False])])
    assert s1 == s2 == s3