예제 #1
0
    def test_mb2_ssd_coco_80(self):
        model = get_model_by_name(
            model_name="mb2_ssd",
            dataset_name="coco_80",
            pretrained=True,
            progress=False,
        )
        from deeplite_torch_zoo.src.objectdetection.datasets.coco_config import (
            DATA,
            MISSING_IDS,
        )

        test_loader = get_data_splits_by_name(
            data_root="/neutrino/datasets/coco2017/",
            dataset_name="coco",
            model_name="mb2_ssd",
            batch_size=32,
            missing_ids=MISSING_IDS,
            classes=DATA["CLASSES"],
        )["test"]
        cocoGt = COCO(
            "/neutrino/datasets/coco2017/annotations/instances_val2017.json")

        eval_fn = get_eval_function("mb2_ssd", "coco_80")
        APs = eval_fn(
            model,
            test_loader,
            gt=cocoGt,
            _set="coco",
        )

        print(APs)
        self.assertEqual(abs(APs["mAP"] - 0.138) < 0.001, True)
예제 #2
0
    def test_mb2_ssd_coco_6(self):
        model = get_model_by_name(
            model_name="mb2_ssd",
            dataset_name="coco_gm_6",
            pretrained=True,
            progress=False,
        )
        test_loader = get_data_splits_by_name(
            data_root="/home/ehsan/data/",
            dataset_name="coco_gm",
            model_name="mb2_ssd",
            batch_size=32,
            train_ann_file="train_data_COCO.json",
            train_dir="images/train",
            val_ann_file="test_data_COCO.json",
            val_dir="images/test",
            classes=[
                "class1", "class2", "class3", "class4", "class5", "class6"
            ],
        )["test"]
        cocoGt = COCO("/home/ehsan/data/test_data_COCO.json")
        eval_fn = get_eval_function("mb2_ssd", "coco_gm")
        APs = eval_fn(
            model,
            test_loader,
            gt=cocoGt,
            _set="coco",
        )

        self.assertEqual(abs(APs["mAP"] - 0.227) < 0.001, True)
예제 #3
0
    def test_eval_objectdetection(self):
        all_objectdetection_models = list_models(
            task_type_filter="object_detection",
            print_table=False,
            return_list=True)

        for (model_name, dataset_name) in all_objectdetection_models:
            funct = get_eval_function(model_name=model_name,
                                      dataset_name=dataset_name)
            assert funct in objectdetection_eval_list
예제 #4
0
    def test_eval_segmentation(self):
        all_segmentation_models = list_models(
            task_type_filter="semantic_segmentation",
            print_table=False,
            return_list=True,
        )

        for (model_name, dataset_name) in all_segmentation_models:

            funct = get_eval_function(model_name=model_name,
                                      dataset_name=dataset_name)
            assert funct in segmentation_eval_list
예제 #5
0
 def test_yolov5_6s_voc(self):
     model = get_model_by_name(
         model_name="yolo5_6s",
         dataset_name="voc_20",
         pretrained=True,
         progress=False,
     )
     eval_fn = get_eval_function("yolo5_6s", "voc_20")
     APs = eval_fn(model,
                   "/neutrino/datasets//VOCdevkit/VOC2007/",
                   _set="voc")
     print(APs)
     self.assertEqual(abs(APs["mAP"] - 0.821) < 0.001, True)
예제 #6
0
 def test_mb3_small_vww(self):
     model = get_model_by_name(
         model_name="mobilenetv3_small",
         dataset_name="vww",
         pretrained=True,
         progress=False,
     )
     test_loader = get_data_splits_by_name(
         data_root="/neutrino/datasets/vww",
         dataset_name="vww",
         batch_size=128,
     )["test"]
     eval_fn = get_eval_function("mobilenetv3_small", "vww")
     ACC = eval_fn(model, test_loader)
     self.assertEqual(abs(ACC["acc"] - 0.892) < 0.001, True)
예제 #7
0
 def test_mb2_ssd_voc_20(self):
     model = get_model_by_name(
         model_name="mb2_ssd",
         dataset_name="voc_20",
         pretrained=True,
         progress=False,
     )
     test_loader = get_data_splits_by_name(
         data_root="/neutrino/datasets/VOCdevkit",
         dataset_name="voc",
         model_name="mb2_ssd_lite",
         batch_size=32,
     )["test"]
     eval_fn = get_eval_function("mb2_ssd", "voc_20")
     APs = eval_fn(model, test_loader)
     self.assertEqual(abs(APs["mAP"] - 0.443) < 0.001, True)
예제 #8
0
 def test_resnet50_tinyimagenet(self):
     model = get_model_by_name(
         model_name="resnet50",
         dataset_name="tinyimagenet",
         pretrained=True,
         progress=False,
     )
     test_loader = get_data_splits_by_name(
         data_root="/neutrino/datasets/TinyImageNet/",
         dataset_name="tinyimagenet",
         batch_size=128,
         num_workers=0,
     )["val"]
     eval_fn = get_eval_function("resnet50", "tinyimagenet")
     ACC = eval_fn(model, test_loader)
     print(ACC)
     self.assertEqual(abs(ACC["acc"] - 0.730) < 0.001, True)
예제 #9
0
 def test_vgg16_ssd_wider_face(self):
     model = get_model_by_name(
         model_name="vgg16_ssd",
         dataset_name="wider_face",
         pretrained=True,
         progress=False,
     )
     test_loader = get_data_splits_by_name(
         data_root="/neutrino/datasets/wider_face",
         dataset_name="wider_face",
         model_name="vgg16_ssd",
         batch_size=8,
     )["test"]
     eval_fn = get_eval_function("vgg16_ssd", "wider_face")
     APs = eval_fn(model, test_loader)
     print(APs)
     self.assertEqual(abs(APs["mAP"] - 0.7071) < 0.001, True)
예제 #10
0
 def test_unet_scse_resnet18_carvana(self):
     model = get_model_by_name(
         model_name="unet_scse_resnet18",
         dataset_name="carvana",
         pretrained=True,
         progress=False,
     )
     test_loader = get_data_splits_by_name(
         data_root="/neutrino/datasets/carvana",
         dataset_name="carvana",
         model_name="unet",
         num_workers=1,
     )["test"]
     eval_fn = get_eval_function("unet_scse_resnet18", "carvana")
     acc = eval_fn(model, test_loader, net="unet_scse_resnet18")
     miou = acc["miou"]
     print(miou)
     self.assertEqual(abs(miou - 0.989) < 0.001, True)
예제 #11
0
 def test_unet_carvana(self):
     model = get_model_by_name(
         model_name="unet",
         dataset_name="carvana",
         pretrained=True,
         progress=False,
     )
     test_loader = get_data_splits_by_name(
         data_root="/neutrino/datasets/carvana",
         dataset_name="carvana",
         model_name="unet",
         num_workers=1,
     )["test"]
     eval_fn = get_eval_function("unet", "carvana")
     acc = eval_fn(model, test_loader, net="unet")
     dc = acc["dice_coeff"]
     print(dc)
     self.assertEqual(abs(dc - 0.983) < 0.001, True)
예제 #12
0
 def test_fasterrcnn_resnet50_fpn_coco(self):
     model = get_model_by_name(
         model_name="fasterrcnn_resnet50_fpn",
         dataset_name="coco_80",
         pretrained=True,
         progress=False,
     )
     test_loader = get_data_splits_by_name(
         data_root="/neutrino/datasets/coco2017/",
         dataset_name="coco",
         model_name="fasterrcnn_resnet50_fpn",
         batch_size=32,
     )["test"]
     cocoGt = COCO(
         "/neutrino/datasets/coco2017/annotations/instances_val2017.json")
     eval_fn = get_eval_function("fasterrcnn_resnet50_fpn", "coco_80")
     APs = eval_fn(model, test_loader, gt=cocoGt)
     self.assertEqual(abs(APs["mAP"] - 0.369) < 0.001, True)
예제 #13
0
 def test_deeplab_mobilenet_voc_20(self):
     model = get_model_by_name(
         model_name="deeplab_mobilenet",
         dataset_name="voc_20",
         pretrained=True,
         progress=False,
     )
     test_loader = get_data_splits_by_name(
         data_root="/neutrino/datasets",
         sbd_root=None,
         dataset_name="voc",
         model_name="deeplab_mobilenet",
         num_workers=2,
         backbone="vgg",
     )["test"]
     eval_fn = get_eval_function("deeplab_mobilenet", "voc_20")
     acc = eval_fn(model, test_loader, net="deeplab")
     miou = acc["miou"]
     print(miou)
     self.assertEqual(abs(miou - 0.571) < 0.001, True)
예제 #14
0
 def test_fcn32_voc_20(self):
     model = get_model_by_name(
         model_name="fcn32",
         dataset_name="voc_20",
         pretrained=True,
         progress=False,
     )
     test_loader = get_data_splits_by_name(
         data_root="/neutrino/datasets",
         dataset_name="voc",
         model_name="fcn32",
         num_workers=1,
         batch_size=1,
         backbone="vgg",
     )["test"]
     eval_fn = get_eval_function("fcn32", "voc_20")
     acc = eval_fn(model, test_loader, net="fcn32")
     miou = acc["miou"]
     print(miou)
     self.assertEqual(abs(miou - 0.713) < 0.001, True)
예제 #15
0
def train(opt, device):
    epochs, batch_size, noval, nosave, workers, freeze, = \
        opt.epochs, opt.batch_size, opt.noval, opt.nosave, opt.workers, opt.freeze

    d = datetime.datetime.now()
    run_id = '{:%Y-%m-%d__%H-%M-%S}'.format(d)
    save_dir = Path(opt.save_dir) / run_id

    # Directories
    w = save_dir / 'weights'  # weights dir
    w.mkdir(parents=True, exist_ok=True)  # make dir
    last, best = w / 'last.pt', w / 'best.pt'

    # Get hyperparameter dict
    hyp, hyp_loss = get_hyperparameter_dict(opt.dataset_name, opt.hp_config)

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.safe_dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)
    tb_writer = SummaryWriter(save_dir)
    opt.img_dir = Path(opt.img_dir)

    # Config
    cuda = device.type != 'cpu'
    init_seeds(1 + RANK)

    # Dataloaders
    dataset_kwargs = {}
    if opt.train_img_res:
        dataset_kwargs = {'img_size': opt.train_img_res}
    dataset_splits = get_data_splits_by_name(
        data_root=opt.img_dir,
        dataset_name=opt.dataset_name,
        model_name=opt.model_name,
        batch_size=batch_size,
        num_workers=workers,
        distributed=(cuda and RANK != -1),
        **dataset_kwargs
    )
    test_img_size = dataset_splits["test"].dataset._img_size
    train_img_size = dataset_splits["train"].dataset._img_size
    if opt.test_img_res:
        test_img_size = opt.test_img_res

    train_loader = dataset_splits["train"]
    dataset = train_loader.dataset
    nc = dataset.num_classes

    nb = len(train_loader)  # number of batches

    # Model
    model = create_model(
        model_name=opt.model_name,
        pretraining_dataset=opt.pretraining_source_dataset,
        pretrained=opt.pretrained,
        num_classes=nc,
        progress=True,
        device=device,
    )

    # Freeze
    freeze = [f'model.{x}.' for x in range(freeze)]  # layers to freeze
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print(f'freezing {k}')
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    g0, g1, g2 = [], [], []  # optimizer parameter groups
    for v in model.modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias
            g2.append(v.bias)
        if isinstance(v, nn.BatchNorm2d):  # weight (no decay)
            g0.append(v.weight)
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):  # weight (with decay)
            g1.append(v.weight)

    if opt.adam:
        optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']})  # add g1 with weight_decay
    optimizer.add_param_group({'params': g2})  # add g2 (biases)
    LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
                f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
    del g0, g1, g2

    # Scheduler
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in [-1, 0] else None

    start_epoch, best_fitness = 0, 0.0

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[-1].nl  # number of detection layers (used for scaling hyp['obj'])

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
                        'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info('Using SyncBatchNorm()')

    # Process 0
    if RANK in [-1, 0]:
        # Anchors
        model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and RANK != -1:
        model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)

    # Model parameters
    hyp['giou'] *= 3. / nl  # scale to layers
    hyp['box'] = hyp['giou']
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (train_img_size / 640) ** 2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model

    eval_function = get_eval_function(dataset_name=opt.dataset_name,
        model_name=opt.model_name)
    criterion = YoloV5Loss(
        model=model,
        num_classes=nc,
        device=device,
        hyp_cfg=hyp_loss,
    )

    if opt.eval_before_train:
        ap_dict = evaluate(model, eval_function, opt.dataset_name, opt.img_dir,
            nc, test_img_size, device)
        LOGGER.info(f'Eval metrics: {ap_dict}')

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    last_opt_step = -1
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    stopper = EarlyStopping(patience=opt.patience)

    loss_giou_mean = AverageMeter()
    loss_conf_mean = AverageMeter()
    loss_cls_mean = AverageMeter()
    loss_mean = AverageMeter()

    LOGGER.info(f'Image sizes {train_img_size} train, {test_img_size} val\n'
                f'Using {train_loader.num_workers} dataloader workers\n'
                f"Logging results to {colorstr('bold', save_dir)}\n"
                f'Starting training for {epochs} epochs...')
    for epoch in range(start_epoch, epochs):  # epoch
        model.train()

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
        if RANK in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, labels_length, _) in pbar:  # batch
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float()

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(train_img_size * 0.5, train_img_size * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_giou, loss_conf, loss_cls = criterion(
                       pred, targets, labels_length, imgs.shape[-1]
                )
                # Update running mean of tracked metrics
                loss_items = torch.tensor([loss_giou, loss_conf, loss_cls]).to(device)

                if RANK in (-1, 0):
                    loss_giou_mean.update(loss_giou, imgs.size(0))
                    loss_conf_mean.update(loss_conf, imgs.size(0))
                    loss_cls_mean.update(loss_cls, imgs.size(0))
                    loss_mean.update(loss, imgs.size(0))

                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni - last_opt_step >= accumulate:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
                pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
                    f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
            # end batch

        # Scheduler
        scheduler.step()

        if RANK in [-1, 0]:
            for idx, param_group in enumerate(optimizer.param_groups):
                tb_writer.add_scalar(f'learning_rate/gr{idx}', param_group['lr'], epoch)
            tb_writer.add_scalar('train/giou_loss', loss_giou_mean.avg, epoch)
            tb_writer.add_scalar('train/conf_loss', loss_conf_mean.avg, epoch)
            tb_writer.add_scalar('train/cls_loss', loss_cls_mean.avg, epoch)
            tb_writer.add_scalar('train/loss', loss_mean.avg, epoch)

            # mAP
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            if (not noval or final_epoch) and epoch % opt.eval_freq == 0:  # Calculate mAP
                ap_dict = evaluate(ema.ema, eval_function, opt.dataset_name, opt.img_dir,
                    nc, test_img_size, device)
                LOGGER.info(f'Eval metrics: {ap_dict}')
                tb_writer.add_scalar('eval/mAP', ap_dict['mAP'], epoch)
                for eval_key, eval_value in ap_dict.items():
                    if eval_key != 'mAP':
                        tb_writer.add_scalar(f'ap_per_class/{eval_key}', eval_value, epoch)

            # Update best mAP
            fi = ap_dict['mAP']
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            if (not nosave) or final_epoch:  # if save
                ckpt = {'epoch': epoch,
                        'best_fitness': best_fitness,
                        'model': deepcopy(de_parallel(model)).half(),
                        'ema': deepcopy(ema.ema).half(),
                        'updates': ema.updates,
                        'optimizer': optimizer.state_dict()}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):
                    torch.save(ckpt, w / f'epoch{epoch}.pt')
                del ckpt

            # Stop Single-GPU
            if RANK == -1 and stopper(epoch=epoch, fitness=fi):
                break

        # end epoch
    # end training
    if RANK in [-1, 0]:
        LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
                if f is best:
                    LOGGER.info(f'\nValidating {f}...')
                    ckpt = torch.load(f, map_location=device)
                    model = ckpt['ema' if ckpt.get('ema') else 'model']
                    model.float().eval()

                    ap_dict = evaluate(model, eval_function, opt.dataset_name, opt.img_dir,
                        nc, test_img_size, device)
                    LOGGER.info(f'Eval metrics: {ap_dict}')

        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")

    torch.cuda.empty_cache()