def build(self, learning_rate, natoms, model_dict, label_dict, suffix): polar_hat = label_dict[self.label_name] polar = model_dict[self.tensor_name] l2_loss = tf.reduce_mean(tf.square(self.scale * (polar - polar_hat)), name='l2_' + suffix) if not self.atomic: atom_norm = 1. / global_cvt_2_tf_float(natoms[0]) l2_loss = l2_loss * atom_norm self.l2_l = l2_loss more_loss = {} return l2_loss, more_loss
def build(self, learning_rate, natoms, model_dict, label_dict, suffix): coord = model_dict['coord'] energy = model_dict['energy'] atom_ener = model_dict['atom_ener'] nframes = tf.shape(atom_ener)[0] natoms = tf.shape(atom_ener)[1] # build energy dipole atom_ener0 = atom_ener - tf.reshape( tf.tile( tf.reshape(energy / global_cvt_2_ener_float(natoms), [-1, 1]), [1, natoms]), [nframes, natoms]) coord = tf.reshape(coord, [nframes, natoms, 3]) atom_ener0 = tf.reshape(atom_ener0, [nframes, 1, natoms]) ener_dipole = tf.matmul(atom_ener0, coord) ener_dipole = tf.reshape(ener_dipole, [nframes, 3]) energy_hat = label_dict['energy'] ener_dipole_hat = label_dict['energy_dipole'] find_energy = label_dict['find_energy'] find_ener_dipole = label_dict['find_energy_dipole'] l2_ener_loss = tf.reduce_mean(tf.square(energy - energy_hat), name='l2_' + suffix) ener_dipole_reshape = tf.reshape(ener_dipole, [-1]) ener_dipole_hat_reshape = tf.reshape(ener_dipole_hat, [-1]) l2_ener_dipole_loss = tf.reduce_mean( tf.square(ener_dipole_reshape - ener_dipole_hat_reshape), name='l2_' + suffix) # atom_norm_ener = 1./ global_cvt_2_ener_float(natoms[0]) atom_norm_ener = 1. / global_cvt_2_ener_float(natoms) pref_e = global_cvt_2_ener_float( find_energy * (self.limit_pref_e + (self.start_pref_e - self.limit_pref_e) * learning_rate / self.starter_learning_rate)) pref_ed = global_cvt_2_tf_float( find_ener_dipole * (self.limit_pref_ed + (self.start_pref_ed - self.limit_pref_ed) * learning_rate / self.starter_learning_rate)) l2_loss = 0 more_loss = {} l2_loss += atom_norm_ener * (pref_e * l2_ener_loss) l2_loss += global_cvt_2_ener_float(pref_ed * l2_ener_dipole_loss) more_loss['l2_ener_loss'] = l2_ener_loss more_loss['l2_ener_dipole_loss'] = l2_ener_dipole_loss self.l2_l = l2_loss self.l2_more = more_loss return l2_loss, more_loss
def build(self, learning_rate, natoms, model_dict, label_dict, suffix): energy = model_dict['energy'] force = model_dict['force'] virial = model_dict['virial'] atom_ener = model_dict['atom_ener'] energy_hat = label_dict['energy'] force_hat = label_dict['force'] virial_hat = label_dict['virial'] atom_ener_hat = label_dict['atom_ener'] atom_pref = label_dict['atom_pref'] find_energy = label_dict['find_energy'] find_force = label_dict['find_force'] find_virial = label_dict['find_virial'] find_atom_ener = label_dict['find_atom_ener'] find_atom_pref = label_dict['find_atom_pref'] l2_ener_loss = tf.reduce_mean(tf.square(energy - energy_hat), name='l2_' + suffix) force_reshape = tf.reshape(force, [-1]) force_hat_reshape = tf.reshape(force_hat, [-1]) atom_pref_reshape = tf.reshape(atom_pref, [-1]) diff_f = force_hat_reshape - force_reshape if self.relative_f is not None: force_hat_3 = tf.reshape(force_hat, [-1, 3]) norm_f = tf.reshape(tf.norm(force_hat_3, axis=1), [-1, 1]) + self.relative_f diff_f_3 = tf.reshape(diff_f, [-1, 3]) diff_f_3 = diff_f_3 / norm_f diff_f = tf.reshape(diff_f_3, [-1]) l2_force_loss = tf.reduce_mean(tf.square(diff_f), name="l2_force_" + suffix) l2_pref_force_loss = tf.reduce_mean(tf.multiply( tf.square(diff_f), atom_pref_reshape), name="l2_pref_force_" + suffix) virial_reshape = tf.reshape(virial, [-1]) virial_hat_reshape = tf.reshape(virial_hat, [-1]) l2_virial_loss = tf.reduce_mean(tf.square(virial_hat_reshape - virial_reshape), name="l2_virial_" + suffix) atom_ener_reshape = tf.reshape(atom_ener, [-1]) atom_ener_hat_reshape = tf.reshape(atom_ener_hat, [-1]) l2_atom_ener_loss = tf.reduce_mean(tf.square(atom_ener_hat_reshape - atom_ener_reshape), name="l2_atom_ener_" + suffix) atom_norm = 1. / global_cvt_2_tf_float(natoms[0]) atom_norm_ener = 1. / global_cvt_2_ener_float(natoms[0]) pref_e = global_cvt_2_ener_float( find_energy * (self.limit_pref_e + (self.start_pref_e - self.limit_pref_e) * learning_rate / self.starter_learning_rate)) pref_f = global_cvt_2_tf_float( find_force * (self.limit_pref_f + (self.start_pref_f - self.limit_pref_f) * learning_rate / self.starter_learning_rate)) pref_v = global_cvt_2_tf_float( find_virial * (self.limit_pref_v + (self.start_pref_v - self.limit_pref_v) * learning_rate / self.starter_learning_rate)) pref_ae = global_cvt_2_tf_float( find_atom_ener * (self.limit_pref_ae + (self.start_pref_ae - self.limit_pref_ae) * learning_rate / self.starter_learning_rate)) pref_pf = global_cvt_2_tf_float( find_atom_pref * (self.limit_pref_pf + (self.start_pref_pf - self.limit_pref_pf) * learning_rate / self.starter_learning_rate)) l2_loss = 0 more_loss = {} if self.has_e: l2_loss += atom_norm_ener * (pref_e * l2_ener_loss) more_loss['l2_ener_loss'] = l2_ener_loss if self.has_f: l2_loss += global_cvt_2_ener_float(pref_f * l2_force_loss) more_loss['l2_force_loss'] = l2_force_loss if self.has_v: l2_loss += global_cvt_2_ener_float(atom_norm * (pref_v * l2_virial_loss)) more_loss['l2_virial_loss'] = l2_virial_loss if self.has_ae: l2_loss += global_cvt_2_ener_float(pref_ae * l2_atom_ener_loss) more_loss['l2_atom_ener_loss'] = l2_atom_ener_loss if self.has_pf: l2_loss += global_cvt_2_ener_float(pref_pf * l2_pref_force_loss) more_loss['l2_pref_force_loss'] = l2_pref_force_loss self.l2_l = l2_loss self.l2_more = more_loss return l2_loss, more_loss