def get_texts_sentiment(texts, model_ensemble): """ Get sentiment scores for list of texts :param texts: :param model_ensemble: :return: average_sentiment_prediction """ with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) twitter_maxlen = 30 youtube_maxlen = 30 twitter_st = SentenceTokenizer(vocabulary, twitter_maxlen) youtube_st = SentenceTokenizer(vocabulary, youtube_maxlen) twitter_tokenized, _, _ = twitter_st.tokenize_sentences(texts) youtube_tokenized, _, _ = youtube_st.tokenize_sentences(texts) twitter_predictions = model_ensemble[0].predict(twitter_tokenized) youtube_predictions = model_ensemble[1].predict(youtube_tokenized) average_predictions = (twitter_predictions + youtube_predictions) / 2 average_sentiment_prediction = [ modify_range(prediction)[0] for prediction in average_predictions ] return average_sentiment_prediction
def test_dataset_split_explicit(): """ Dataset is split according to given indices """ split_parameter = [train_ind, val_ind, test_ind] st = SentenceTokenizer(vocab, 30) tokenized, _, _ = st.tokenize_sentences(sentences) result, result_dicts, added = st.split_train_val_test(sentences, dicts, split_parameter, extend_with=0) train = result[0] val = result[1] test = result[2] train_dicts = result_dicts[0] val_dicts = result_dicts[1] test_dicts = result_dicts[2] for i, sentence in enumerate(sentences): if i in train_ind: assert tokenized[i] in train assert dicts[i] in train_dicts elif i in val_ind: assert tokenized[i] in val assert dicts[i] in val_dicts elif i in test_ind: assert tokenized[i] in test assert dicts[i] in test_dicts assert len(train) == len(train_ind) assert len(val) == len(val_ind) assert len(test) == len(test_ind) assert len(train_dicts) == len(train_ind) assert len(val_dicts) == len(val_ind) assert len(test_dicts) == len(test_ind)
def test_encode_texts(): """ Text encoding is stable. """ TEST_SENTENCES = [ u'I love mom\'s cooking', u'I love how you never reply back..', u'I love cruising with my homies', u'I love messing with yo mind!!', u'I love you and now you\'re just gone..', u'This is shit', u'This is the shit' ] maxlen = 30 batch_size = 32 with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES) model = deepmoji_feature_encoding(maxlen, PRETRAINED_PATH) encoding = model.predict(tokenized) avg_across_sentences = np.around(np.mean(encoding, axis=0)[:5], 3) assert np.allclose(avg_across_sentences, np.array([-0.023, 0.021, -0.037, -0.001, -0.005]))
def generate_emoji(self, text): translator = Translator(from_lang="chinese", to_lang="english") translation = translator.translate(text) TEST_SENTENCES = [translation] def top_elements(array, k): ind = np.argpartition(array, -k)[-k:] return ind[np.argsort(array[ind])][::-1] self.maxlen = 30 with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, self.maxlen) tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES) prob = self.model.predict(tokenized) t_tokens = tokenized[0] t_score = [] t_prob = prob[0] ind_top = top_elements(t_prob, 5) t_score.append(sum(t_prob[ind_top])) t_score.append(ind_top[0]) print(t_score[1]) if (t_score[0] > 0.5): return (mylabel[t_score[1]]) else: return ('low')
def test_encode_texts(): """ Text encoding is stable. """ TEST_SENTENCES = [u'I love mom\'s cooking', u'I love how you never reply back..', u'I love cruising with my homies', u'I love messing with yo mind!!', u'I love you and now you\'re just gone..', u'This is shit', u'This is the shit'] maxlen = 30 batch_size = 32 with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES) model = deepmoji_feature_encoding(maxlen, PRETRAINED_PATH) encoding = model.predict(tokenized) avg_across_sentences = np.around(np.mean(encoding, axis=0)[:5], 3) assert np.allclose(avg_across_sentences, np.array([-0.023, 0.021, -0.037, -0.001, -0.005]))
def main(): df = pd.read_csv('../data/interim/sentences.csv') maxlen = 30 batch_size = 32 print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) sentences = [] for sent in df.body.tolist(): sent = unicode(str(sent), "utf-8") if sent.strip() == "": sent = 'blank' sent = unicode(str(sent), "utf-8") sentences.append(sent) tokenized, _, _ = st.tokenize_sentences(sentences) # generate full deepmoji features for sentences print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_feature_encoding(maxlen, PRETRAINED_PATH) model.summary() print('Encoding texts with deepmoji features...') encoding = model.predict(tokenized) deepmoji_encodings = pd.DataFrame(encoding) deepmoji_encodings.index = df.post_id deepmoji_post_scores = deepmoji_encodings.groupby('post_id').agg( ['mean', 'max', 'min']) deepmoji_post_scores = flatten_cols(deepmoji_post_scores) deepmoji_post_scores = deepmoji_post_scores.add_prefix('deepmoji_') # generate 64 emoji encodings print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() print('Running emoji predictions...') prob = model.predict(tokenized) emoji_scores = pd.DataFrame(prob) emoji_scores = emoji_scores.add_prefix('emoji_') emoji_scores.index = df.post_id emoji_post_scores = emoji_scores.groupby('post_id').agg( ['mean', 'max', 'min']) emoji_post_scores = flatten_cols(emoji_post_scores) print('deepmoji features shape: {}'.format(deepmoji_post_scores.shape)) print('emoji features shape: {}'.format(emoji_post_scores.shape)) total_feats = deepmoji_post_scores.merge(emoji_post_scores, left_index=True, right_index=True) print('total features shape: {}'.format(total_feats.shape)) total_feats.to_csv('../data/interim/all_sent_level_deepmoji.csv')
def scoreTexts(TEST_SENTENCES): global vocabulary, model st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES) if model == None: model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() prob = model.predict(tokenized) # Find top emojis for each sentence. Emoji ids (0-63) # correspond to the mapping in emoji_overview.png # at the root of the DeepMoji repo. scores = [] for i, t in enumerate(TEST_SENTENCES): t_tokens = tokenized[i] t_score = {} t_score["text"] = t t_prob = prob[i] ind_top = top_elements(t_prob, 5) #t_score["prob"]=sum(t_prob[ind_top]) emoji_score = {} for ind in ind_top: emoji_score[ind] = t_prob[ind] t_score["score"] = emoji_score scores.append(t_score) return scores
def predict(self, sentence): sentence_to_analyze = [sentence] print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, self.maxlen) tokenized, _, _ = st.tokenize_sentences(sentence_to_analyze) print('Running predictions.') prob = self.model.predict(tokenized) # Find top emojis for each sentence. Emoji ids (0-63) # correspond to the mapping in emoji_overview.png # at the root of the DeepMoji repo. scores = [] for i, t in enumerate(sentence_to_analyze): t_tokens = tokenized[i] t_score = [t] t_prob = prob[i] ind_top = self.top_elements(t_prob, 5) ind_top_unicode = [] for index in ind_top: unicode = self.mapping[index] ind_top_unicode.append(unicode) print(ind_top) t_score.append(sum(t_prob[ind_top])) t_score.extend(ind_top) t_score.extend([t_prob[ind] for ind in ind_top]) scores.append(t_score) print(t_score) return ind_top_unicode
def load_vocab_prepare_data(sentences,vocab_path = VOCAB_PATH,maxlen =100): ''' Va charger le vocabulaire de Deepmoji et preparer l'input du modèle à partir de l'embedding des textes INPUT : vocab_path : Où trouver le vocabulaire, a priori on peut mettre ce que l'on veut mais on préfère garder le vocab ini maxlen : taille de l'espace de sortie pour chaque mots OUT: renvoie le data set prêt à entrainer le modèle (stemmer + enlevement des stop words) ''' stop_words = set(stopwords.words('english')) stmr = PorterStemmer() sentence_util = [] for sentence in sentences: processed_sentence = [] for word in sentence: if word not in stop_words and word not in string.punctuation: processed_sentence.append(stmr.stem(word)) sentence_util.append(''.join(processed_sentence)) print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(sentence_util) return(tokenized)
def test_id_to_sentence(): """Tokenizing and converting back preserves the input. """ vb = {'CUSTOM_MASK': 0, 'aasdf': 1000, 'basdf': 2000} sentence = u'aasdf basdf basdf basdf' st = SentenceTokenizer(vb, 30) token, _, _ = st.tokenize_sentences([sentence]) assert st.to_sentence(token[0]) == sentence
def emoji_predict(sen_list, maxlen=30, step=32, model_path='../model/deepmoji_weights.hdf5', vocab_path='../model/vocabulary.json'): model = deepmoji_emojis(maxlen, model_path) model.summary() with open(vocab_path, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen, ignore_sentences_with_only_custom=True) records = [] for i in range(0, len(sen_list), step): if i + step >= len(sen_list): tokenized, _, _ = st.tokenize_sentences(sen_list[i:len(sen_list)]) content = sen_list[i:len(sen_list)] if len(tokenized) != len(content): print('Skip ' + str(i)) continue else: tokenized, _, _ = st.tokenize_sentences(sen_list[i:i + step]) content = sen_list[i:i + step] if len(tokenized) != len(content): print('Skip ' + str(i)) continue prob = model.predict(tokenized) for j in range(len(content)): r = {} r['text'] = [content[j]] t_prob = prob[j] ind_top = top_elements(t_prob, 5) r['confidence'] = (str(sum(t_prob[ind_top]))) r['top5emoji'] = [unicode(emoji_list[ind]) for ind in ind_top] r['top5prob'] = [str(t_prob[ind]) for ind in ind_top] r['prob'] = [str(num) for num in t_prob] records.append(r) if i % 1024 == 0: print('Processing: ' + str(i) + '/' + str(len(sen_list))) return records
def test_id_to_sentence_with_unknown(): """Tokenizing and converting back preserves the input, except for unknowns. """ vb = {'CUSTOM_MASK': 0, 'CUSTOM_UNKNOWN': 1, 'aasdf': 1000, 'basdf': 2000} sentence = u'aasdf basdf ccc' expected = u'aasdf basdf CUSTOM_UNKNOWN' st = SentenceTokenizer(vb, 30) token, _, _ = st.tokenize_sentences([sentence]) assert st.to_sentence(token[0]) == expected
def process_text(df, vocab): """ Tokenizes the text for predictions """ try: texts = [unicode(x) for x in df['text']] except UnicodeDecodeError: texts = [x.decode('utf-8') for x in df['text']] st = SentenceTokenizer(vocab, 30) tokenized, _, _ = st.tokenize_sentences(texts) return tokenized
def model_deep(language): maxlen = 30 batch_size = 32 #list_new = [] #list_new.append(language) answer = [unicode(item) for item in language] print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(answer) print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() print('Running predictions.') prob = model.predict(tokenized) # Find top emojis for each sentence. Emoji ids (0-63) # correspond to the mapping in emoji_overview.png # at the root of the DeepMoji repo. print('Writing results to {}'.format(OUTPUT_PATH)) scores = [] for i, t in enumerate(answer): t_tokens = tokenized[i] t_score = [t] t_prob = prob[i] ind_top = top_elements(t_prob, 5) t_score.append(sum(t_prob[ind_top])) t_score.extend(ind_top) t_score.extend([t_prob[ind] for ind in ind_top]) scores.append(t_score) print(t_score) with open(OUTPUT_PATH, 'wb') as csvfile: writer = csv.writer(csvfile, delimiter=',', lineterminator='\n') writer.writerow([ 'Text', 'Top5%', 'Emoji_1', 'Emoji_2', 'Emoji_3', 'Emoji_4', 'Emoji_5', 'Pct_1', 'Pct_2', 'Pct_3', 'Pct_4', 'Pct_5' ]) for i, row in enumerate(scores): try: writer.writerow(row) except Exception: print("Exception at row {}!".format(i)) print(scores) return ''.join(str(e) for e in scores)
def predict_emoji(training_data, maxlen): ''' predicts the emojis commonly associated with the sentences then adds it to the :param sentences: list of sentences to predict :param maxlen: max length of the setences given :return: ''' def top_elements(array, k): ind = np.argpartition(array, -k)[-k:] return ind[np.argsort(array[ind])][::-1] sentences = training_data['sentence'] print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(sentences) print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() print('Running predictions.') prob = model.predict(tokenized, batch_size=500) # Find top emojis for each sentence. Emoji ids (0-63) # correspond to the mapping in emoji_overview.png # at the root of the DeepMoji repo. # print('Writing results to {}'.format(OUTPUT_PATH)) # scores = [] # for i, t in enumerate(sentences): # t_tokens = tokenized[i] # t_score = [t] # t_prob = prob[i] # ind_top = top_elements(t_prob, 5) # t_score.append(sum(t_prob[ind_top])) # t_score.extend(ind_top) # t_score.extend([t_prob[ind] for ind in ind_top]) # scores.append(t_score) # print(t_score) return prob
class DeepMojiTransformer(TransformerMixin, BaseEstimator): def __init__(self, model_path, return_attention=False, max_len=10): self.model_path = model_path self.return_attention = return_attention self.max_len = max_len self.initialize() def initialize(self): deepmoji_weights_path = os.path.join(self.model_path, 'deepmoji_weights.hdf5') vocabulary_path = os.path.join(self.model_path, 'vocabulary.json') with open(vocabulary_path, 'r') as f: vocab = json.load(f) self._st_ = SentenceTokenizer(vocab, self.max_len) self._model_ = deepmoji_feature_encoding(self.max_len, deepmoji_weights_path, self.return_attention) def fit(self, X, *_): return self def transform(self, X, *_): tokens, _, _ = self._st_.tokenize_sentences(X) vecs = self._model_.predict(tokens) if self.return_attention: return vecs[1] return vecs def fit_transform(self, X, y=None, **fit_params): return self.transform(X) def __setstate__(self, state): self.model_path = state['model_path'] self.max_len = state['max_len'] self.return_attention = state['return_attention'] self.initialize() def __getstate__(self): return { 'model_path': self.model_path, 'max_len': self.max_len, 'return_attention': self.return_attention, }
def test_score_emoji(): """ Emoji predictions make sense. """ test_sentences = [ u'I love mom\'s cooking', u'I love how you never reply back..', u'I love cruising with my homies', u'I love messing with yo mind!!', u'I love you and now you\'re just gone..', u'This is shit', u'This is the shit' ] expected = [ np.array([36, 4, 8, 16, 47]), np.array([1, 19, 55, 25, 46]), np.array([31, 6, 30, 15, 13]), np.array([54, 44, 9, 50, 49]), np.array([46, 5, 27, 35, 34]), np.array([55, 32, 27, 1, 37]), np.array([48, 11, 6, 31, 9]) ] def top_elements(array, k): ind = np.argpartition(array, -k)[-k:] return ind[np.argsort(array[ind])][::-1] # Initialize by loading dictionary and tokenize texts with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, 30) tokenized, _, _ = st.tokenize_sentences(test_sentences) # Load model and run model = deepmoji_emojis(maxlen=30, weight_path=PRETRAINED_PATH) prob = model.predict(tokenized) # Find top emojis for each sentence for i, t_prob in enumerate(prob): assert np.array_equal(top_elements(t_prob, 5), expected[i])
def emoticonit(sen): TEST_SENTENCES = [unicode(sen)] maxlen = 30 batch_size = 32 print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized = st.tokenize_sentences(TEST_SENTENCES) print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() print('Running predictions.') prob = model.predict(tokenized) # Find top emojis for each sentence. Emoji ids (0-63) # correspond to the mapping in emoji_overview.png # at the root of the DeepMoji repo. scores = [] selected = [] num = 1 for i, t in enumerate(TEST_SENTENCES): t_tokens = tokenized[i] t_score = [t] t_prob = prob[i] ind_top = top_elements(t_prob, num) t_score.append(sum(t_prob[ind_top])) t_score.extend(ind_top) ind = ind_top.tolist() #list for i in range(num): print(emoticons[ind[i]]) selected.append(emoticons[ind[i]]) t_score.extend([t_prob[ind] for ind in ind_top]) scores.append(t_score) print(t_score) return (selected)
def predict_emoji(training_data, maxlen): ''' predicts the emojis commonly associated with the sentences then adds it to the :param sentences: list of sentences to predict :param maxlen: max length of the setences given :return: ''' sentences = training_data print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(sentences) print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() print('Running predictions.') prob = model.predict(tokenized, batch_size=100) return prob
st = SentenceTokenizer(vocabulary, maxlen) print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() outputSceneChar = {} for scene in sceneCharLines: print(scene) outputCharEmo = {} for character in sceneCharLines[scene]: allText = sceneCharLines[scene][character] #some characters say nothing, this line excludes them in order to avoid error if (allText == ""): continue #tokenize and calc emoji scores tokenized, _, _ = st.tokenize_sentences([allText]) prob = model.predict(tokenized) t_tokens = tokenized[0] t_score = [allText] t_prob = prob[0] ind_top = top_elements(t_prob, 5) t_score.append(sum(t_prob[ind_top])) t_score.extend(map(int, ind_top)) t_score.extend([float(t_prob[ind]) for ind in ind_top]) outputCharEmo[character] = t_score outputSceneChar[scene] = outputCharEmo outputSceneChar = collections.OrderedDict(sorted(outputSceneChar.items())) #outputSceneChar = {str(k):dict(v) for k,v in outputSceneChar.items()} with open('all_emojis.json', 'w') as fp:
u'This is the shit'] def top_elements(array, k): ind = np.argpartition(array, -k)[-k:] return ind[np.argsort(array[ind])][::-1] maxlen = 30 batch_size = 32 print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES) print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() print('Running predictions.') prob = model.predict(tokenized) # Find top emojis for each sentence. Emoji ids (0-63) # correspond to the mapping in emoji_overview.png # at the root of the DeepMoji repo. print('Writing results to {}'.format(OUTPUT_PATH)) scores = [] for i, t in enumerate(TEST_SENTENCES): t_tokens = tokenized[i]
OUTPUT_PATH = os.path.splitext(args.input)[0] + '.csv' def top_elements(array, k): ind = np.argpartition(array, -k)[-k:] return ind[np.argsort(array[ind])][::-1] maxlen = 30 batch_size = 32 print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(lines) print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() print('Running predictions.') prob = model.predict(tokenized) # Find top emojis for each sentence. Emoji ids (0-63) # correspond to the mapping in emoji_overview.png # at the root of the DeepMoji repo. print('Writing results to {}'.format(OUTPUT_PATH)) scores = [] for i, t in enumerate(lines): t_tokens = tokenized[i]
input_text = input("Text: ") def top_elements(array, k): ind = np.argpartition(array, -k)[-k:] return ind[np.argsort(array[ind])][::-1] maxlen = 30 batch_size = 32 print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences([input_text]) print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() print('Running predictions.') prob = model.predict(tokenized) scores = [] for i, t in enumerate([input_text]): print("Text:", t) t_tokens = tokenized[i] t_score = [t] t_prob = prob[i] ind_top = top_elements(t_prob, 5)
print ("TEST_SENTENCES[1]:",TEST_SENTENCES[1]) ################################################################## def top_elements(array, k): ind = np.argpartition(array, -k)[-k:] return ind[np.argsort(array[ind])][::-1] maxlen = 30 batch_size = 32 print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES)#FROM LIST OF TOKENS TO NUMBERS print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() print('Running predictions.') prob = model.predict(tokenized) ####################################################################prob[] is the softmax output for 64 emojis # Find top emojis for each sentence. Emoji ids (0-63) # correspond to the mapping in emoji_overview.png # at the root of the DeepMoji repo. ''' print('Writing results to {}'.format(OUTPUT_PATH)) scores = []
def analyse_text_chunk(text_chunk): OUTPUT_PATH = 'test_sentences.csv' json_file = 'test_sentences.json' TEST_SENTENCES = sent_tokenize(text_chunk) def top_elements(array, k): ind = np.argpartition(array, -k)[-k:] return ind[np.argsort(array[ind])][::-1] maxlen = 30 batch_size = 32 print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES) print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() print('Running predictions.') prob = model.predict(tokenized) print('Writing results to {}'.format(OUTPUT_PATH)) scores = [] for i, t in enumerate(TEST_SENTENCES): t_tokens = tokenized[i] t_score = [t] t_prob = prob[i] ind_top = top_elements(t_prob, 5) t_score.append(sum(t_prob[ind_top])) t_score.extend(ind_top) t_score.extend([t_prob[ind] for ind in ind_top]) scores.append(t_score) #print(t_score) with open(OUTPUT_PATH, 'w') as csvfile: writer = csv.writer(csvfile, delimiter=',', lineterminator='\n') writer.writerow([ 'Text', 'Top5%', 'Emoji_1', 'Emoji_2', 'Emoji_3', 'Emoji_4', 'Emoji_5', 'Pct_1', 'Pct_2', 'Pct_3', 'Pct_4', 'Pct_5' ]) for i, row in enumerate(scores): try: writer.writerow(row) except Exception: print("Exception at row {}!".format(i)) csv_rows = [] with open(OUTPUT_PATH, 'r') as csvfile: reader = csv.DictReader(csvfile) title = reader.fieldnames for row in reader: csv_rows.extend( [{title[i]: row[title[i]] for i in range(len(title))}]) # Convert csv data into json and write it # format = 'pretty' # with open(json_file, "w") as f: # if format == "pretty": # f.write(json.dumps(csv_rows, sort_keys=False, indent=4, separators=(',', ': '), # ensure_ascii=False)) # else: # f.write(json.dumps(data)) return json.dumps(csv_rows, sort_keys=False, indent=4, separators=(',', ': '), ensure_ascii=False)
""" Take a given list of sentences and turn it into a numpy array, where each number corresponds to a word. Padding is used (number 0) to ensure fixed length of sentences. """ from __future__ import print_function import json from deepmoji.sentence_tokenizer import SentenceTokenizer with open('../model/vocabulary.json', 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, 30) test_sentences = [ u'\u2014 -- \u203c !!\U0001F602', u'Hello world!', u'This is a sample tweet #example', ] tokens, infos, stats = st.tokenize_sentences(test_sentences) print(tokens) print(infos) print(stats)
def start(r, auth, keyword, max_items): api = tweepy.API(auth) para = "" happy_counter = 0 sad_counter = 0 fear_counter = 0 angry_counter = 0 love_counter = 0 happy_buffer = [] sad_buffer = [] fear_buffer = [] angry_buffer = [] love_buffer = [] happy_phrases = [] sad_phrases = [] fear_phrases = [] angry_phrases = [] love_phrases = [] happy_para = '' sad_para = '' fear_para = '' angry_para = '' love_para = '' happy_location = [] sad_location = [] fear_location = [] angry_location = [] love_location = [] def check_token(token): for i in class_tokens: if token in class_tokens[i]: return i return -1 TEST_SENTENCES = [] LOCATIONS = [] for tweet in tweepy.Cursor(api.search, q=keyword, count=100, lang='en', include_entities=False, tweet_mode='extended').items(max_items): location = tweet.user.location if not location: location = "" else: if "," in location: location = location[0:location.index(",")] location = location.strip() LOCATIONS.append(location) # print('Location :' , location) temp = tweet._json.get('full_text') if temp.startswith("RT"): try: temp = tweet._json.get('retweeted_status').get('full_text') except: temp = tweet._json.get('full_text') else: temp = tweet._json.get('full_text') temp = temp.replace("RT ", "").replace("!", "").replace( "..", "").replace("$", "").replace("%", "").replace("&", "").replace( "~", "").replace("-", "").replace("+", "").replace("#", "").replace( "\\n", "").replace("\\", "").replace("|", "") temp = " ".join(filter(lambda x: x[0] != '@', temp.split())) temp = re.sub(r'https\S+', "", temp) temp = temp.strip() para = para + temp TEST_SENTENCES.append(temp) print('Locations :', LOCATIONS) r.extract_keywords_from_text(para) # r.get_ranked_phrases_with_scores() ranked_phrases = r.get_ranked_phrases() for i in range(0, len(ranked_phrases)): ranked_phrases[i] = ranked_phrases[i].replace(",", "").replace( "'", "").replace("(", "").replace(')', "").replace('.', "").replace( '`', "").replace('!', "") ranked_phrases[i] = re.sub(' +', ' ', ranked_phrases[i]).strip() top_keywords = ranked_phrases[:] for i in range(0, len(ranked_phrases)): t1 = ranked_phrases[i].split() if len(t1) > 3: top_keywords.remove(ranked_phrases[i]) # print(TEST_SENTENCES) def top_elements(array, k): ind = np.argpartition(array, -k)[-k:] return ind[np.argsort(array[ind])][::-1] maxlen = 30 batch_size = 32 # print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES) # print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) #model.summary() # print('Running predictions.') prob = model.predict(tokenized) # Find top emojis for each sentence. Emoji ids (0-63) # correspond to the mapping in emoji_overview.png # at the root of the DeepMoji repo. # print('Writing results to {}'.format(OUTPUT_PATH)) scores = [] for i, t in enumerate(TEST_SENTENCES): t_tokens = tokenized[i] t_score = [t] t_prob = prob[i] ind_top = top_elements(t_prob, 5) t_score.append(sum(t_prob[ind_top])) t_score.append(ind_top) t_score.append([t_prob[ind] for ind in ind_top]) t_score.append('' + LOCATIONS[i]) scores.append(t_score) # print(t_score) # print('Scores skjdvbkjsdbvjk : ' , scores[0]) for i, row in enumerate(scores): try: # print(row[0]) # print('row 2') # print(row[2][0]) # if (row[2] in class_tokens] temp = check_token(row[2][0]) # print(temp) if temp == 'sad': sad_counter = 1 + sad_counter sad_buffer.append(row[0]) sad_para = sad_para + row[0] sad_location.append(row[4]) elif temp == 'happy': happy_counter = 1 + happy_counter # print("happy counter"); # print(happy_counter); happy_buffer.append(row[0]) happy_para = happy_para + row[0] happy_location.append(row[4]) elif temp == 'fear': fear_counter = 1 + fear_counter fear_buffer.append(row[0]) fear_para = fear_para + row[0] fear_location.append(row[4]) elif temp == 'angry': angry_counter = 1 + angry_counter angry_buffer.append(row[0]) angry_para = angry_para + row[0] angry_location.append(row[4]) elif temp == 'love': love_counter = 1 + love_counter love_buffer.append(row[0]) love_para = love_para + row[0] love_location.append(row[4]) except Exception: pass # print("Exception at row {}!".format(i)) # print("Angry buffer : " , angry_buffer) # print("Sad buffer : " , sad_buffer) r.extract_keywords_from_text(happy_para) happy_phrases = r.get_ranked_phrases()[0:3] r.extract_keywords_from_text(sad_para) sad_phrases = r.get_ranked_phrases()[0:3] r.extract_keywords_from_text(fear_para) fear_phrases = r.get_ranked_phrases()[0:3] r.extract_keywords_from_text(angry_para) angry_phrases = r.get_ranked_phrases()[0:3] r.extract_keywords_from_text(love_para) love_phrases = r.get_ranked_phrases()[0:3] # print("Phrases " , happy_phrases) # print("Angry Locations : " , angry_location) return happy_buffer, sad_buffer, fear_buffer, love_buffer, angry_buffer, happy_phrases, sad_phrases, fear_phrases, love_phrases, angry_phrases, happy_location, sad_location, fear_location, love_location, angry_location, top_keywords[: 10]
from deepmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH TEST_SENTENCES = [ u'I love mom\'s cooking', u'I love how you never reply back..', u'I love cruising with my homies', u'I love messing with yo mind!!', u'I love you and now you\'re just gone..', u'This is shit', u'This is the shit' ] maxlen = 30 batch_size = 32 print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES) print('Loading model from {}.'.format(PRETRAINED_PATH)) model = deepmoji_feature_encoding(maxlen, PRETRAINED_PATH) model.summary() print('Encoding texts..') encoding = model.predict(tokenized) print('First 5 dimensions for sentence: {}'.format(TEST_SENTENCES[0])) print(encoding[0, :5]) # Now you could visualize the encodings to see differences, # run a logistic regression classifier on top, # or basically anything you'd like to do.
else: string = string + words[i] + ' ' def top_elements(array, k): ind = np.argpartition(array, -k)[-k:] return ind[np.argsort(array[ind])][::-1] maxlen = 30 batch_size = 32 with open(VOCAB_PATH, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) tokenized, _, _ = st.tokenize_sentences(clauses) model = deepmoji_emojis(maxlen, PRETRAINED_PATH) model.summary() prob = model.predict(tokenized) # Find top emojis for each sentence. Emoji ids (0-63) # correspond to the mapping in emoji_overview.png # at the root of the DeepMoji repo. scores = [] emotions = ['frustration', 'anger', 'excited', 'happy', 'neutral', 'disgust', 'joy'] mapping = [2, 0, 0, 0, 6, 0, 2, 6, 6, 2, 3, 4, 4, 2, 4, 3, 6, 6, 6, 0, 3, 2, 4, 4, 6, 4, 4, 0, 3, 5, 3, 3, 1, 2, 4, 4, 3, 1, 4, 4, 2, 2, 4, 4, 2, 4, 4, 3, 3, 3, 3, 2, 0, 6, 2, 1, 3, 4, 2, 3, 3, 3, 4, 4] for i, t in enumerate(clauses): t_tokens = tokenized[i]