def __init__(self, name): print("Starting new Tensorflow session...") self.session = tf.Session() print("Loading pipeline modules...") self.tokenizer = segmenter.load_model(name) self.tagger_pos = pos_tagger.load_model(name) # class tagger_pos self.tagger_ner = ner_tagger.load_model(name) # class tagger_ner
deepnlp.download(module='segment', name='zh_entertainment') deepnlp.download(module='pos', name='en') deepnlp.download(module='ner', name='zh_o2o') # Download module deepnlp.download('segment') deepnlp.download('pos') deepnlp.download('ner') deepnlp.download('parse') # deepnlp.download() ## 测试 load model from deepnlp import segmenter try: tokenizer = segmenter.load_model(name='zh') tokenizer = segmenter.load_model(name='zh_o2o') tokenizer = segmenter.load_model(name='zh_entertainment') except Exception as e: print("DEBUG: ERROR Found...") print(e) ## pos from deepnlp import pos_tagger try: tagger = pos_tagger.load_model( name='en') # Loading English model, lang code 'en' tagger = pos_tagger.load_model( name='zh') # Loading English model, lang code 'en' except Exception as e: print("DEBUG: ERROR Found...")
#coding:utf-8 from __future__ import unicode_literals # compatible with python3 unicode from deepnlp import segmenter from deepnlp import pos_tagger # Load Model tokenizer = segmenter.load_model(name='zh') tagger = pos_tagger.load_model(name='zh') #Segmentation text = "我爱吃北京烤鸭" # unicode coding, py2 and py3 compatible words = tokenizer.seg(text) print(" ".join(words)) #POS Tagging tagging = tagger.predict(words) for (w, t) in tagging: pair = w + "/" + t print(pair) #Results #我/r #爱/v #吃/v #北京/ns #烤鸭/n
#!/usr/bin/python # -*- coding:utf-8 -*- import deepnlp from deepnlp import segmenter try: deepnlp.download("segment", "zh_finance") except Exception as e: print (e) deepnlp.register_model("segment", "zh_finance") deepnlp.download("segment", "zh_finance") try: seg_tagger = segmenter.load_model("zh_finance") except Exception as e: print (e) from deepnlp import pos_tagger try: deepnlp.download("pos", "zh_finance") except Exception as e: print (e) deepnlp.register_model("pos", "zh_finance") deepnlp.download("pos", "zh_finance") try: pos_tagger.load_model("zh_finance") except Exception as e: print (e)