def partial_fit(self, X, y=None): """Update k means estimate on a single mini-batch X. Parameters ---------- X : array-like, shape = [n_samples, rows, cols, channels] Coordinates of the data points to cluster. y : Ignored """ X = check_image_array(self, X) return self._partial_fit(X, y)
def fit(self, X, y=None): """Compute the centroids on X by chunking it into mini-batches. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, rows, cols, channels] Training instances to cluster. y : Ignored """ X = check_image_array(self, X) return self._fit(X, y)
def predict(self, X): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, rows, cols, channels] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, "cluster_centers_") X = check_image_array(self, X) return self._predict(X)