# encoding: utf-8
"""
@author : zhirui zhou
@contact: [email protected]
@time   : 2020/6/1 16:37
"""
from deepseries.data import create_seq2seq_data_loader
import numpy as np

enc_len = 12
dec_len = 8
series = np.random.rand(1000, 8, 100)

data_loader = create_seq2seq_data_loader(series, enc_len, dec_len, time_idx=np.arange(series.shape[2]), batch_size=32,
                                         seq_last=True)

for i in data_loader:
    pass

i[0]['enc_x'].shape
i[1].shape
예제 #2
0
series, series_mean, series_std = F.normalize(series[:, np.newaxis,
                                                     DROP_BEFORE:],
                                              axis=2)
series_lags = F.normalize(series_lags[:, :, DROP_BEFORE:])[0]
series_lags = Value(series_lags, 'xy_lags')

time_idxes = np.arange(series.shape[2])
trn_idx, val_idx = forward_split(time_idxes, ENC_LEN, VALID_LEN + TEST_LEN)
val_idx, test_idx = forward_split(val_idx, ENC_LEN, TEST_LEN)
trn_dl = create_seq2seq_data_loader(series,
                                    enc_len=ENC_LEN,
                                    dec_len=DEC_LEN,
                                    time_idx=trn_idx,
                                    batch_size=BATCH_SIZE,
                                    features=[series_lags, series_lags_corr],
                                    seq_last=True,
                                    device='cuda',
                                    mode='train',
                                    num_workers=0,
                                    pin_memory=False)

val_dl = create_seq2seq_data_loader(series,
                                    enc_len=ENC_LEN,
                                    dec_len=DEC_LEN,
                                    time_idx=val_idx,
                                    batch_size=BATCH_SIZE,
                                    features=[series_lags, series_lags_corr],
                                    seq_last=True,
                                    device='cuda',
                                    mode='valid')
import numpy as np
from torch.optim import Adam

batch_size = 16
enc_len = 36
dec_len = 12
series = np.sin(np.arange(0, 1000))
series = series.reshape(1, 1, -1)
train_idx, valid_idx = forward_split(np.arange(series.shape[2]),
                                     enc_len=14,
                                     valid_size=200)

train_dl = create_seq2seq_data_loader(series,
                                      enc_len=14,
                                      dec_len=7,
                                      time_idx=train_idx,
                                      batch_size=12,
                                      sampling_rate=1.,
                                      seq_last=True)
valid_dl = create_seq2seq_data_loader(series,
                                      enc_len=14,
                                      dec_len=7,
                                      time_idx=valid_idx,
                                      batch_size=12,
                                      sampling_rate=1.,
                                      seq_last=True)
model = Wave2Wave(1, debug=False, num_layers=5, num_blocks=1)
model.cuda()
opt = Adam(model.parameters(), 0.001)
learner = Learner(model, opt, ".")
learner.fit(100, train_dl, valid_dl, early_stopping=False)
예제 #4
0
train_idx, valid_idx = forward_split(np.arange(series_len),
                                     enc_len=enc_len,
                                     valid_size=valid_size + test_size)
valid_idx, test_idx = forward_split(valid_idx, enc_len, test_size)

# mask test, will not be used for calculating mean/std.
mask = np.zeros_like(series).astype(bool)
mask[:, :, test_idx] = False
series, mu, std = F.normalize(series, axis=2, fillna=True, mask=mask)

# wave2wave train
train_dl = create_seq2seq_data_loader(series[:, :, train_idx],
                                      enc_len,
                                      dec_len,
                                      sampling_rate=0.1,
                                      batch_size=batch_size,
                                      seq_last=True,
                                      device='cuda')
valid_dl = create_seq2seq_data_loader(series[:, :, valid_idx],
                                      enc_len,
                                      dec_len,
                                      batch_size=batch_size,
                                      seq_last=True,
                                      device='cuda')

wave = Wave2Wave(target_size=1,
                 num_layers=6,
                 num_blocks=1,
                 dropout=0.1,
                 loss_fn=RMSE())