def load_model( device, model_path: str, ): with open('labels.json') as label_file: labels = json.load(label_file) hparams = { "model": { "hidden_size": 1024, "hidden_layers": 5, }, "audio_conf": { "sample_rate": 16000, "window_size": .02, "window_stride": .01, "window": "hamming", }, "num_classes": len(labels) } model = DeepSpeech.load_from_checkpoint( checkpoint_path=to_absolute_path(model_path), hparams=hparams, decoder=None, ) model.to(device) model.eval() return model
def load_model(device, model_path): model = DeepSpeech.load_from_checkpoint( hydra.utils.to_absolute_path(model_path)) model.eval() model = model.to(device) return model