def eval_model(self, model_path: str, test_manifest: str, cuda: bool, use_half: bool, lm_config: LMConfig): # Due to using TravisCI with no GPU support we have to disable cuda eval_cfg = EvalConfig(model=ModelConfig(cuda=cuda, model_path=model_path, use_half=use_half), lm=lm_config, test_manifest=test_manifest) evaluate(eval_cfg)
def eval_model(self, model_path: str, test_path: str, cuda: bool, precision: int, lm_config: LMConfig): # Due to using TravisCI with no GPU support we have to disable cuda eval_cfg = EvalConfig( model=ModelConfig( cuda=cuda, model_path=model_path, precision=precision ), lm=lm_config, test_path=test_path ) evaluate(eval_cfg)
cutoff_prob=args.cutoff_prob, beam_width=args.beam_width, lm_workers=args.lm_workers) target_decoder = GreedyDecoder(labels) test_dataset = SpectrogramDataset(audio_conf=model.audio_conf, manifest_filepath=args.test_manifest, labels=labels, normalize=True) test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) wer, cer, output_data = evaluate(test_loader=test_loader, device=device, model=model, decoder=decoder, target_decoder=target_decoder, save_output=args.save_output, verbose=args.verbose, half=args.half) print('Test Summary \t' 'Average WER {wer:.3f}\t' 'Average CER {cer:.3f}\t'.format(wer=wer, cer=cer)) if args.save_output is not None: torch.save(output_data, args.save_output)
def train(cfg): # Set seeds for determinism torch.manual_seed(cfg.training.seed) torch.cuda.manual_seed_all(cfg.training.seed) np.random.seed(cfg.training.seed) random.seed(cfg.training.seed) main_proc = True device = torch.device("cpu" if cfg.training.no_cuda else "cuda") is_distributed = os.environ.get( "LOCAL_RANK") # If local rank exists, distributed env if is_distributed: # when using NCCL, on failures, surviving nodes will deadlock on NCCL ops # because NCCL uses a spin-lock on the device. Set this env var and # to enable a watchdog thread that will destroy stale NCCL communicators os.environ["NCCL_BLOCKING_WAIT"] = "1" device_id = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(device_id) print(f"Setting CUDA Device to {device_id}") dist.init_process_group(backend=cfg.training.dist_backend) main_proc = device_id == 0 # Main process handles saving of models and reporting checkpoint_handler = CheckpointHandler( save_folder=to_absolute_path(cfg.checkpointing.save_folder), best_val_model_name=cfg.checkpointing.best_val_model_name, checkpoint_per_iteration=cfg.checkpointing.checkpoint_per_iteration, save_n_recent_models=cfg.checkpointing.save_n_recent_models) if main_proc and cfg.visualization.visdom: visdom_logger = VisdomLogger(id=cfg.visualization.id, num_epochs=cfg.training.epochs) if main_proc and cfg.visualization.tensorboard: tensorboard_logger = TensorBoardLogger( id=cfg.visualization.id, log_dir=to_absolute_path(cfg.visualization.log_dir), log_params=cfg.visualization.log_params) if cfg.checkpointing.load_auto_checkpoint: latest_checkpoint = checkpoint_handler.find_latest_checkpoint() if latest_checkpoint: cfg.checkpointing.continue_from = latest_checkpoint if cfg.checkpointing.continue_from: # Starting from previous model state = TrainingState.load_state( state_path=to_absolute_path(cfg.checkpointing.continue_from)) model = state.model if cfg.training.finetune: state.init_finetune_states(cfg.training.epochs) if main_proc and cfg.visualization.visdom: # Add previous scores to visdom graph visdom_logger.load_previous_values(state.epoch, state.results) if main_proc and cfg.visualization.tensorboard: # Previous scores to tensorboard logs tensorboard_logger.load_previous_values(state.epoch, state.results) else: # Initialise new model training with open(to_absolute_path(cfg.data.labels_path)) as label_file: labels = json.load(label_file) audio_conf = dict(sample_rate=cfg.data.sample_rate, window_size=cfg.data.window_size, window_stride=cfg.data.window_stride, window=cfg.data.window) if cfg.augmentation.noise_dir: audio_conf += dict(noise_dir=to_absolute_path( cfg.augmentation.noise_dir), noise_prob=cfg.augmentation.noise_prob, noise_levels=(cfg.augmentation.noise_min, cfg.augmentation.noise_max)) rnn_type = cfg.model.rnn_type.lower() assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru" model = DeepSpeech(rnn_hidden_size=cfg.model.hidden_size, nb_layers=cfg.model.hidden_layers, labels=labels, rnn_type=supported_rnns[rnn_type], audio_conf=audio_conf, bidirectional=cfg.model.bidirectional) state = TrainingState(model=model) state.init_results_tracking(epochs=cfg.training.epochs) # Data setup evaluation_decoder = GreedyDecoder( model.labels) # Decoder used for validation train_dataset = SpectrogramDataset( audio_conf=model.audio_conf, manifest_filepath=to_absolute_path(cfg.data.train_manifest), labels=model.labels, normalize=True, speed_volume_perturb=cfg.augmentation.speed_volume_perturb, spec_augment=cfg.augmentation.spec_augment) test_dataset = SpectrogramDataset(audio_conf=model.audio_conf, manifest_filepath=to_absolute_path( cfg.data.val_manifest), labels=model.labels, normalize=True, speed_volume_perturb=False, spec_augment=False) if not is_distributed: train_sampler = DSRandomSampler(dataset=train_dataset, batch_size=cfg.data.batch_size, start_index=state.training_step) else: train_sampler = DSElasticDistributedSampler( dataset=train_dataset, batch_size=cfg.data.batch_size, start_index=state.training_step) train_loader = AudioDataLoader(dataset=train_dataset, num_workers=cfg.data.num_workers, batch_sampler=train_sampler) test_loader = AudioDataLoader(dataset=test_dataset, num_workers=cfg.data.num_workers, batch_size=cfg.data.batch_size) model = model.to(device) parameters = model.parameters() if cfg.optimizer.adam: optimizer = torch.optim.AdamW(parameters, lr=cfg.optimizer.learning_rate, betas=cfg.optimizer.betas, eps=cfg.optimizer.eps, weight_decay=cfg.optimizer.weight_decay) else: optimizer = torch.optim.SGD(parameters, lr=cfg.optimizer.learning_rate, momentum=cfg.optimizer.momentum, nesterov=True, weight_decay=cfg.optimizer.weight_decay) model, optimizer = amp.initialize(model, optimizer, opt_level=cfg.apex.opt_level, loss_scale=cfg.apex.loss_scale) if state.optim_state is not None: optimizer.load_state_dict(state.optim_state) amp.load_state_dict(state.amp_state) # Track states for optimizer/amp state.track_optim_state(optimizer) state.track_amp_state(amp) if is_distributed: model = DistributedDataParallel(model, device_ids=[device_id]) print(model) print("Number of parameters: %d" % DeepSpeech.get_param_size(model)) criterion = CTCLoss() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() for epoch in range(state.epoch, cfg.training.epochs): model.train() end = time.time() start_epoch_time = time.time() state.set_epoch(epoch=epoch) train_sampler.set_epoch(epoch=epoch) train_sampler.reset_training_step(training_step=state.training_step) for i, (data) in enumerate(train_loader, start=state.training_step): state.set_training_step(training_step=i) inputs, targets, input_percentages, target_sizes = data input_sizes = input_percentages.mul_(int(inputs.size(3))).int() # measure data loading time data_time.update(time.time() - end) inputs = inputs.to(device) out, output_sizes = model(inputs, input_sizes) out = out.transpose(0, 1) # TxNxH float_out = out.float() # ensure float32 for loss loss = criterion(float_out, targets, output_sizes, target_sizes).to(device) loss = loss / inputs.size(0) # average the loss by minibatch loss_value = loss.item() # Check to ensure valid loss was calculated valid_loss, error = check_loss(loss, loss_value) if valid_loss: optimizer.zero_grad() # compute gradient with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), cfg.optimizer.max_norm) optimizer.step() else: print(error) print('Skipping grad update') loss_value = 0 state.avg_loss += loss_value losses.update(loss_value, inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format( (epoch + 1), (i + 1), len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses)) if main_proc and cfg.checkpointing.checkpoint_per_iteration: checkpoint_handler.save_iter_checkpoint_model(epoch=epoch, i=i, state=state) del loss, out, float_out state.avg_loss /= len(train_dataset) epoch_time = time.time() - start_epoch_time print('Training Summary Epoch: [{0}]\t' 'Time taken (s): {epoch_time:.0f}\t' 'Average Loss {loss:.3f}\t'.format(epoch + 1, epoch_time=epoch_time, loss=state.avg_loss)) with torch.no_grad(): wer, cer, output_data = evaluate(test_loader=test_loader, device=device, model=model, decoder=evaluation_decoder, target_decoder=evaluation_decoder) state.add_results(epoch=epoch, loss_result=state.avg_loss, wer_result=wer, cer_result=cer) print('Validation Summary Epoch: [{0}]\t' 'Average WER {wer:.3f}\t' 'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer)) if main_proc and cfg.visualization.visdom: visdom_logger.update(epoch, state.result_state) if main_proc and cfg.visualization.tensorboard: tensorboard_logger.update(epoch, state.result_state, model.named_parameters()) if main_proc and cfg.checkpointing.checkpoint: # Save epoch checkpoint checkpoint_handler.save_checkpoint_model(epoch=epoch, state=state) # anneal lr for g in optimizer.param_groups: g['lr'] = g['lr'] / cfg.optimizer.learning_anneal print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr'])) if main_proc and (state.best_wer is None or state.best_wer > wer): checkpoint_handler.save_best_model(epoch=epoch, state=state) state.set_best_wer(wer) state.reset_avg_loss() state.reset_training_step() # Reset training step for next epoch
def hydra_main(cfg: EvalConfig): evaluate(cfg=cfg)