def test_run_multiclass(self): data = dsutils.load_glass_uci() conf = deeptable.ModelConfig( # dnn_units=((256, 0, False), (128, 0, False)), # dnn_activation='relu', fixed_embedding_dim=False, embeddings_output_dim=0, apply_gbm_features=False, auto_discrete=False, ) bt = batch_trainer.BatchTrainer( data, 'x_10', eval_size=0.2, validation_size=0.2, eval_metrics=['AUC', 'accuracy', 'recall', 'precision', 'f1'], # AUC/recall/precision/f1/mse/mae/msle/rmse/r2 dt_config=conf, verbose=0, dt_epochs=1, # seed=9527, cross_validation=True, stratified=False, num_folds=5, ) ms = bt.start() assert ms.leaderboard().shape[1], 7
def test_load_data(self): df_adult = dsutils.load_adult() df_glass = dsutils.load_glass_uci() df_hd = dsutils.load_heart_disease_uci() df_bank = dsutils.load_bank() df_boston = dsutils.load_boston() assert df_adult.shape, (32561, 15) assert df_glass.shape, (214, 11) assert df_hd.shape, (303, 14) assert df_bank.shape, (108504, 18) assert df_boston.shape, (506, 14)
def setup_class(self): setup_dask(self) print("Loading datasets...") data = dd.from_pandas(dsutils.load_glass_uci(), npartitions=2) self.y = data.pop(10).values self.X = data conf = deeptable.ModelConfig(metrics=['AUC'], apply_gbm_features=False, ) self.dt = deeptable.DeepTable(config=conf) self.X_train, self.X_test, self.y_train, self.y_test = \ [t.persist() for t in get_tool_box(data).train_test_split(self.X, self.y, test_size=0.2, random_state=42)] self.model, self.history = self.dt.fit(self.X_train, self.y_train, batch_size=32, epochs=3)
def setup_class(self): print("Loading datasets...") data = dsutils.load_glass_uci() self.y = data.pop(10).values self.X = data conf = deeptable.ModelConfig( metrics=['AUC'], apply_gbm_features=False, ) self.dt = deeptable.DeepTable(config=conf) self.X_train, \ self.X_test, \ self.y_train, \ self.y_test = train_test_split(self.X, self.y, test_size=0.2, random_state=42) self.model, self.history = self.dt.fit(self.X_train, self.y_train, epochs=1)
def run_glass_uci(): df = dsutils.load_glass_uci() df.columns = [f'col_{c}' if c != 10 else 'y' for c in df.columns.to_list()] # train(df, 'y', 'Recall') train(df, 'y', 'AUC')