def main(args=None): args = process_args(args) if not args.plotFile and not args.outRawCounts and not args.outQualityMetrics: sys.stderr.write("\nAt least one of --plotFile, --outRawCounts or --outQualityMetrics is required.\n") sys.exit(1) cr = sumR.SumCoveragePerBin( args.bamfiles, args.binSize, args.numberOfSamples, blackListFileName=args.blackListFileName, numberOfProcessors=args.numberOfProcessors, verbose=args.verbose, region=args.region, extendReads=args.extendReads, minMappingQuality=args.minMappingQuality, ignoreDuplicates=args.ignoreDuplicates, center_read=args.centerReads, samFlag_include=args.samFlagInclude, samFlag_exclude=args.samFlagExclude, minFragmentLength=args.minFragmentLength, maxFragmentLength=args.maxFragmentLength) num_reads_per_bin = cr.run() if num_reads_per_bin.sum() == 0: import sys sys.stderr.write( "\nNo reads were found in {} regions sampled. Check that the\n" "min mapping quality is not overly high and that the \n" "chromosome names between bam files are consistant.\n" "\n".format(num_reads_per_bin.shape[0])) exit(1) if args.skipZeros: num_reads_per_bin = countR.remove_row_of_zeros(num_reads_per_bin) total = len(num_reads_per_bin[:, 0]) x = np.arange(total).astype('float') / total # normalize from 0 to 1 if args.plotFile is not None: i = 0 # matplotlib won't iterate through line styles by itself pyplot_line_styles = sum([7 * ["-"], 7 * ["--"], 7 * ["-."], 7 * [":"]], []) plotly_colors = ["#d73027", "#fc8d59", "#f33090", "#e0f3f8", "#91bfdb", "#4575b4"] plotly_line_styles = sum([6 * ["solid"], 6 * ["dot"], 6 * ["dash"], 6 * ["longdash"], 6 * ["dashdot"], 6 * ["longdashdot"]], []) data = [] for i, reads in enumerate(num_reads_per_bin.T): count = np.cumsum(np.sort(reads)) count = count / count[-1] # to normalize y from 0 to 1 if args.plotFileFormat == 'plotly': trace = go.Scatter(x=x, y=count, mode='lines', name=args.labels[i]) trace['line'].update(dash=plotly_line_styles[i % 36], color=plotly_colors[i % 6]) data.append(trace) else: j = i % 35 plt.plot(x, count, label=args.labels[i], linestyle=pyplot_line_styles[j]) plt.xlabel('rank') plt.ylabel('fraction w.r.t. bin with highest coverage') # set the plotFileFormat explicitly to None to trigger the # format from the file-extension if not args.plotFileFormat: args.plotFileFormat = None if args.plotFileFormat == 'plotly': fig = go.Figure() fig['data'] = data fig['layout'].update(title=args.plotTitle) fig['layout']['xaxis1'].update(title="rank") fig['layout']['yaxis1'].update(title="fraction w.r.t bin with highest coverage") py.plot(fig, filename=args.plotFile, auto_open=False) else: plt.legend(loc='upper left') plt.suptitle(args.plotTitle) plt.savefig(args.plotFile, bbox_inches=0, format=args.plotFileFormat) plt.close() if args.outRawCounts is not None: of = open(args.outRawCounts, "w") of.write("#plotFingerprint --outRawCounts\n") of.write("'" + "'\t'".join(args.labels) + "'\n") fmt = "\t".join(np.repeat('%d', num_reads_per_bin.shape[1])) + "\n" for row in num_reads_per_bin: of.write(fmt % tuple(row)) of.close() if args.outQualityMetrics is not None: of = open(args.outQualityMetrics, "w") of.write("Sample\tAUC\tSynthetic AUC\tX-intercept\tSynthetic X-intercept\tElbow Point\tSynthetic Elbow Point") if args.JSDsample: of.write("\tJS Distance\tSynthetic JS Distance\t% genome enriched\tdiff. enrichment\tCHANCE divergence") else: of.write("\tSynthetic JS Distance") of.write("\n") line = np.arange(num_reads_per_bin.shape[0]) / float(num_reads_per_bin.shape[0] - 1) for idx, reads in enumerate(num_reads_per_bin.T): counts = np.cumsum(np.sort(reads)) counts = counts / float(counts[-1]) AUC = np.sum(counts) / float(len(counts)) XInt = (np.argmax(counts > 0) + 1) / float(counts.shape[0]) elbow = (np.argmax(line - counts) + 1) / float(counts.shape[0]) expected = getExpected(np.mean(reads)) # A tuple of expected (AUC, XInt, elbow) of.write("{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}".format(args.labels[idx], AUC, expected[0], XInt, expected[1], elbow, expected[2])) if args.JSDsample: JSD = getJSD(args, idx, num_reads_per_bin) syntheticJSD = getSyntheticJSD(num_reads_per_bin[:, idx]) CHANCE = getCHANCE(args, idx, num_reads_per_bin) of.write("\t{0}\t{1}\t{2}\t{3}\t{4}".format(JSD, syntheticJSD, CHANCE[0], CHANCE[1], CHANCE[2])) else: syntheticJSD = getSyntheticJSD(num_reads_per_bin[:, idx]) of.write("\t{0}".format(syntheticJSD)) of.write("\n") of.close()
def main(args=None): args = process_args(args) if not args.plotFile and not args.outRawCounts and not args.outQualityMetrics: sys.stderr.write( "\nAt least one of --plotFile, --outRawCounts or --outQualityMetrics is required.\n" ) sys.exit(1) cr = sumR.SumCoveragePerBin(args.bamfiles, args.binSize, args.numberOfSamples, blackListFileName=args.blackListFileName, numberOfProcessors=args.numberOfProcessors, verbose=args.verbose, region=args.region, extendReads=args.extendReads, minMappingQuality=args.minMappingQuality, ignoreDuplicates=args.ignoreDuplicates, center_read=args.centerReads, samFlag_include=args.samFlagInclude, samFlag_exclude=args.samFlagExclude, minFragmentLength=args.minFragmentLength, maxFragmentLength=args.maxFragmentLength) num_reads_per_bin = cr.run() if num_reads_per_bin.sum() == 0: import sys sys.stderr.write( "\nNo reads were found in {} regions sampled. Check that the\n" "min mapping quality is not overly high and that the \n" "chromosome names between bam files are consistant.\n" "\n".format(num_reads_per_bin.shape[0])) exit(1) if args.skipZeros: num_reads_per_bin = countR.remove_row_of_zeros(num_reads_per_bin) total = len(num_reads_per_bin[:, 0]) x = np.arange(total).astype('float') / total # normalize from 0 to 1 if args.plotFile: i = 0 # matplotlib won't iterate through line styles by itself pyplot_line_styles = sum( [7 * ["-"], 7 * ["--"], 7 * ["-."], 7 * [":"]], []) for i, reads in enumerate(num_reads_per_bin.T): count = np.cumsum(np.sort(reads)) count = count / count[-1] # to normalize y from 0 to 1 j = i % 35 plt.plot(x, count, label=args.labels[i], linestyle=pyplot_line_styles[j]) plt.xlabel('rank') plt.ylabel('fraction w.r.t. bin with highest coverage') plt.legend(loc='upper left') plt.suptitle(args.plotTitle) # set the plotFileFormat explicitly to None to trigger the # format from the file-extension if not args.plotFileFormat: args.plotFileFormat = None plt.savefig(args.plotFile.name, bbox_inches=0, format=args.plotFileFormat) plt.close() if args.outRawCounts: args.outRawCounts.write("'" + "'\t'".join(args.labels) + "'\n") fmt = "\t".join(np.repeat('%d', num_reads_per_bin.shape[1])) + "\n" for row in num_reads_per_bin: args.outRawCounts.write(fmt % tuple(row)) args.outRawCounts.close() if args.outQualityMetrics: args.outQualityMetrics.write( "Sample\tAUC\tSynthetic AUC\tX-intercept\tSynthetic X-intercept\tElbow Point\tSynthetic Elbow Point" ) if args.JSDsample: args.outQualityMetrics.write( "\tJS Distance\tSynthetic JS Distance\t% genome enriched\tdiff. enrichment\tCHANCE divergence" ) args.outQualityMetrics.write("\n") line = np.arange( num_reads_per_bin.shape[0]) / float(num_reads_per_bin.shape[0] - 1) for idx, reads in enumerate(num_reads_per_bin.T): counts = np.cumsum(np.sort(reads)) counts = counts / float(counts[-1]) AUC = np.sum(counts) / float(len(counts)) XInt = (np.argmax(counts > 0) + 1) / float(counts.shape[0]) elbow = (np.argmax(line - counts) + 1) / float(counts.shape[0]) expected = getExpected( np.mean(reads)) # A tuple of expected (AUC, XInt, elbow) args.outQualityMetrics.write( "{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}".format( args.labels[idx], AUC, expected[0], XInt, expected[1], elbow, expected[2])) if args.JSDsample: JSD = getJSD(args, idx, num_reads_per_bin) syntheticJSD = getSyntheticJSD(num_reads_per_bin[:, idx]) CHANCE = getCHANCE(args, idx, num_reads_per_bin) args.outQualityMetrics.write( "\t{0}\t{1}\t{2}\t{3}\t{4}".format(JSD, syntheticJSD, CHANCE[0], CHANCE[1], CHANCE[2])) args.outQualityMetrics.write("\n") args.outQualityMetrics.close()