def main(): x,y=PassengerData(params).get_examples(data_dir='../data/international-airline-passengers.csv') print(x.shape,y.shape) model=Model(params=params,use_model='seq2seq') y_pred=model.predict(x.astype(np.float32), model_dir=params['saved_model_dir']) print(y_pred)
def main(plot=False): x, y = PassengerData(params).get_examples( data_dir='../data/international-airline-passengers.csv', sample=0.2) print(x.shape, y.shape) model = Model(params=params, use_model=params['use_model']) try: y_pred = model.predict(x.astype(np.float32), model_dir=params['saved_model_dir']) except: y_pred = model.predict((x.astype(np.float32), np.ones_like(y)), model_dir=params['saved_model_dir']) print(y_pred) if plot: for i in range(y_pred.shape[1]): plt.subplot(y_pred.shape[1], 1, i + 1) plt.plot(y[:, i, 0], label='true') plt.plot(y_pred[:, i], label='pred') plt.legend() plt.show() for i in range(36): plt.subplot(6, 6, i + 1) i = np.random.choice(range(y_pred.shape[0])) plt.plot(y[i, :, 0], label='true') plt.plot(y_pred[i, :], label='pred') plt.legend() plt.show() return y, y_pred
def main(): data_loader = DataLoader(data_dir=params['data_dir']) dataset = data_loader(batch_size=8, training=True) model = Model(use_model=params['use_model'], params=params, use_loss='mse', use_optimizer='adam') # model: seq2seq, tcn, transformer model.train(dataset, n_epochs=10, mode='eager') # mode can choose eager or fit
def main(): data_loader = DataLoader() train_dataset = data_loader(params, data_dir=params['data_dir'], batch_size=params['batch_size'], training=True, sample=0.8) valid_dataset = data_loader(params, data_dir=params['data_dir'], batch_size=params['batch_size'], training=True, sample=0.2) # use_model: seq2seq, wavenet, transformer model = Model(params=params, use_model=params['use_model'], use_loss='mse', use_optimizer='adam', custom_model_params={}) # mode: eager or fit model.train(train_dataset, n_epochs=params['n_epochs'], mode='eager', export_model=True) model.eval(valid_dataset)
def main(): data_loader=DataLoader() dataset=data_loader(data_dir=params['data_dir'], batch_size=8,training=True, sample=0.8) valid_dataset=data_loader(data_dir=params['data_dir'],batch_size=8, training=True, sample=0.2) model=Model(params=params, use_model=params['use_model'], use_loss='mse',use_optimizer='adam') # model: seq2seq, tcn, transformer model.train(dataset,n_epochs=10,mode='eager',export_model=True) # mode can choose eager or fit model.eval(valid_dataset)