def text_to_sequence(text, p=0.0): #print("[Pabz-test] Frontend sin") #if p >= 0: # text = mix_pronunciation(text, p) from deepvoice3_pytorch.frontend.text import text_to_sequence text = text_to_sequence(text, ["english_cleaners"]) return text
def text_to_sequence(text, phonetic=None, p=0.0): # 'text' = WordJTrans # Called during train.py. if (phonetic and p >= 0): text = mix_pronunciation(text, phonetic, p) from deepvoice3_pytorch.frontend.text import text_to_sequence text = text_to_sequence(text, ["french_cleaners"]) return text
def text_to_sequence(text, p=0.0): text = normalize_numbers(text) text = text.replace('\r', '') text = text + '.' if text[-1] not in '!,.:;?' else text if p >= 0: text = mix_pronunciation(text, p) from deepvoice3_pytorch.frontend.text import text_to_sequence text = text_to_sequence(text, ["english_cleaners"]) return text
def text_to_sequence(text, p=0.0): from deepvoice3_pytorch.frontend.text import text_to_sequence text = text_to_sequence(text, ["transliteration_cleaners"]) return text
def text_to_sequence(text, p=0.0): if p >= 0: text = mix_pronunciation(text, p) from deepvoice3_pytorch.frontend.text import text_to_sequence text = text_to_sequence(text, ["english_cleaners"]) return text
def text_to_sequence(text, p=0.0): from deepvoice3_pytorch.frontend.text import text_to_sequence text = text_to_sequence(text, ["estonian_cleaners"]) return text
def mix_pronunciation(text, p): #text = '%'.join(word for word in text.split(', ')) text = ' '.join(_maybe_get_arpabet(word, p) for word in text.split(' ')) return text def text_to_sequence(text, p=0.0): text = normalize_numbers(text) text = text.replace('\r', '') text = text + '.' if text[-1] not in '!,.:;?' else text if p >= 0: text = mix_pronunciation(text, p) from deepvoice3_pytorch.frontend.text import text_to_sequence text = text_to_sequence(text, ["english_cleaners"]) return text from deepvoice3_pytorch.frontend.text import sequence_to_text #test if __name__ == '__main__': print('input ratio:') p = float(input()) print('input English sentence:') text = input() seq = text_to_sequence(text, p) print('sequence:{}'.format(seq)) seq2text = sequence_to_text(seq) print('sequence to text:{}'.format(seq2text))
def text_to_sequence_original(text, p): from deepvoice3_pytorch.frontend.text import text_to_sequence text = text_to_sequence(text, ["french_cleaners"]) return text