def train_nfold(self, x_train, y_train, vocab_init=None): self.models = train_folds(x_train, y_train, self.model_config, self.training_config, self.embeddings) if self.embeddings.use_ELMo: self.embeddings.clean_ELMo_cache() if self.embeddings.use_BERT: self.embeddings.clean_BERT_cache()
def train_nfold(self, x_train, y_train, vocab_init=None, callbacks=None): # bert models if self.model_config.model_type.find("bert") != -1: self.model = getModel(self.model_config, self.training_config) self.model.processor = BERT_classifier_processor(labels=self.model_config.list_classes, x_train=x_train, y_train=y_train) self.model.train() return self.models = train_folds(x_train, y_train, self.model_config, self.training_config, self.embeddings, callbacks=callbacks) if self.embeddings.use_ELMo: self.embeddings.clean_ELMo_cache() if self.embeddings.use_BERT: self.embeddings.clean_BERT_cache()
def train_nfold(self, x_train, y_train, vocab_init=None, callbacks=None): self.models = train_folds(x_train, y_train, self.model_config, self.training_config, self.embeddings, callbacks=callbacks)