def test_logsmooth(self):
        """Test function for logsmooth()"""
        f0 = 1./8
        OSR = 64
        order = 8
        N = 8192
        H = synthesizeNTF(order, OSR, 1, 1.5, f0)
        # fB = int(np.ceil(N/(2. * OSR)))
        quadrature = False
        M = 1
        f1, f2 = ds_f1f2(OSR, f0, quadrature)
        Amp = undbv(-3)
        f = .3
        fin = np.round(((1 - f)/2*f1 + (f + 1)/2 * f2) * N)
        t = np.arange(0, N).reshape((1, -1))
        u = Amp * M * np.cos((2*np.pi/N)*fin*t)
        v, _, _, _ = simulateDSM(u, H, M + 1)

        window = ds_hann(N)
        # NBW = 1.5/N
        spec0 = fft(v * window) / (M*N/4)

        ### -1 is really important THIS IS NOT MATLAB!!
        fl, pl = logsmooth(spec0, fin - 1)

        fname = pkg_resources.resource_filename(__name__,
                                                "test_data/test_logsmooth.mat")
        data = scipy.io.loadmat(fname)
        self.assertTrue(np.allclose(fl, data['fl'], atol=1e-8, rtol=1e-5))
        self.assertTrue(np.allclose(pl, data['pl'], atol=1e-8, rtol=1e-5))
예제 #2
0
    def test_logsmooth(self):
        """Test function for logsmooth()"""
        f0 = 1. / 8
        OSR = 64
        order = 8
        N = 8192
        H = synthesizeNTF(order, OSR, 1, 1.5, f0)
        # fB = int(np.ceil(N/(2. * OSR)))
        quadrature = False
        M = 1
        f1, f2 = ds_f1f2(OSR, f0, quadrature)
        Amp = undbv(-3)
        f = .3
        fin = np.round(((1 - f) / 2 * f1 + (f + 1) / 2 * f2) * N)
        t = np.arange(0, N).reshape((1, -1))
        u = Amp * M * np.cos((2 * np.pi / N) * fin * t)
        v, _, _, _ = simulateDSM(u, H, M + 1)

        window = ds_hann(N)
        # NBW = 1.5/N
        spec0 = fft(v * window) / (M * N / 4)

        ### -1 is really important THIS IS NOT MATLAB!!
        fl, pl = logsmooth(spec0, fin - 1)

        fname = pkg_resources.resource_filename(
            __name__, "test_data/test_logsmooth.mat")
        data = scipy.io.loadmat(fname)
        self.assertTrue(np.allclose(fl, data['fl'], atol=1e-8, rtol=1e-5))
        self.assertTrue(np.allclose(pl, data['pl'], atol=1e-8, rtol=1e-5))
예제 #3
0
 def test_ds_hann(self):
     """Test function for ds_hann()"""
     self.assertTrue(
         np.allclose(self.res,
                     np.hanning(10) - ds.ds_hann(10),
                     atol=1e-8,
                     rtol=1e-5))
 def test_plotSpectrum(self):
     """Test function for plotSpectrum()"""
     f0 = 0
     osr = 32
     quadrature = False
     Hinf = 1.5
     order = 3
     ntf = ds.synthesizeNTF(order, osr, 0, Hinf, f0)
     f1, f2 = ds.ds_f1f2(osr, f0, quadrature)
     delta = 2
     Amp = ds.undbv(-3)
     f = 0.3
     N = 2**12
     f1_bin = np.round(f1*N)
     f2_bin = np.round(f2*N)
     fin = np.round(((1 - f)/2*f1 + (f + 1)/2*f2) * N)
     t = np.arange(0, N)
     u = Amp*np.cos((2*np.pi/N)*fin*t)
     v, xn, xmax, y = ds.simulateDSM(u, ntf, 2)
     window = ds.ds_hann(N)
     NBW = 1.5/N
     spec0 = fft(v * window)/(N/4)
     freq = np.linspace(0, 0.5, N/2 + 1)
     # plotting
     plt.subplot(211)
     plt.plot(freq, ds.dbv(spec0[:N/2 + 1]), 'c', linewidth=1, label='$S$')
     plt.hold(True)
     spec_smoothed = ds.circ_smooth(np.abs(spec0)**2., 16)
     plt.plot(freq, ds.dbp(spec_smoothed[:N/2 + 1]), 'b--', linewidth=2,
              label='$\\mathrm{circ\\_smooth}(S)$')
     ds.plotSpectrum(spec0, fin, 'r', linewidth=2,
                     label='$\\mathrm{plotSpectrum}(S)$')
     Snn = np.abs(ds.evalTF(ntf, np.exp(2j*np.pi*freq)))**2 * 2/12*(delta)**2
     plt.plot(freq, ds.dbp(Snn*NBW), 'm', linewidth=1.5,
              label='$\mathrm{from\\ NTF}$')
     plt.text(0.5, -3, 'NBW = %.1e ' % NBW, horizontalalignment='right',
              verticalalignment='top')
     ds.figureMagic((0, 0.5), None, None, (-140, 0), 20, None)
     plt.ylabel('Spectrum [dB]')
     ax = plt.gca()
     ax.set_title('Smoothing and plotting for LOG and LIN axes')
     plt.legend(loc=4)
     plt.subplot(212)
     plt.plot(freq, ds.dbv(spec0[:N/2 + 1]), 'c', linewidth=1, label='$S$')
     plt.hold(True)
     ds.plotSpectrum(spec0, fin, '--r', linewidth=2,
                     label='$\\mathrm{plotSpectrum}(S)$')
     plt.plot(freq, ds.dbp(spec_smoothed[:N/2 + 1]), 'b', linewidth=2,
              label='$\\mathrm{circ\\_smooth}(S)$')
     plt.plot(freq, ds.dbp(Snn*NBW), 'm', linewidth=1.5,
              label='$\mathrm{from\\ NTF}$')
     plt.text(0.5, -3, 'NBW = %.1e ' % NBW, horizontalalignment='right',
              verticalalignment='top')
     ds.figureMagic((0, 0.5), None, None, (-140, 0), 20, None)
     ax = plt.gca()
     ax.set_xscale('linear')
     plt.ylabel('Spectrum [dB]')
     plt.xlabel('Normalized frequency ($f_s \\rightarrow 1$)')
     plt.legend(loc=4)
예제 #5
0
    def testMultipleQ2(self):
        """Test function for DS simulation with nq>1 2/2"""
        # filtering and simulation
        filtM1 = [0., 0., 0., 2., -1.]
        filtM2 = [1., -2., 1.]
        ntf_eq = zpk_multiply(self.ntfs[1, 1], self.ntfs[1, 1])
        M = self.nlev[0] - 1
        osr = 64
        f0 = 0.
        f1, f2 = ds.ds_f1f2(OSR=64, f0=0., complex_flag=False)
        delta = 2
        Amp = ds.undbv(-3)  # Test tone amplitude, relative to full-scale.
        f = 0.3  # will be adjusted to a bin
        N = 2**12
        f1_bin = int(np.round(f1 * N))
        f2_bin = int(np.round(f2 * N))
        fin = np.round(((1 - f) / 2 * f1 + (f + 1) / 2 * f2) * N)
        # input sine
        t = np.arange(0, N).reshape((1, -1))
        u = Amp * M * np.cos((2 * np.pi / N) * fin * t)
        vx, _, xmax, y = ds.simulateDSM(u, self.ABCD, nlev=self.nlev)
        # separate output #1 and output #2
        v1 = vx[0, :]
        v2 = vx[1, :]
        # filter and combine
        vf = lfilter(filtM1, [1.], v1) + lfilter(filtM2, [1.], v2)
        # compute the spectra
        window = ds.ds_hann(N)
        NBW = 1.5 / N
        spec0 = np.fft.fft(vf * window) / (M * N / 2) / ds.undbv(-6)
        spec1 = np.fft.fft(v1 * window) / (M * N / 2) / ds.undbv(-6)
        spec2 = np.fft.fft(v1 * window) / (M * N / 2) / ds.undbv(-6)
        freq = np.linspace(0, 0.5, N // 2 + 1)

        # smooth, calculate the theorethical response and the SNR for VF
        spec0_smoothed = ds.circ_smooth(np.abs(spec0)**2., 16)
        Snn0 = np.abs(ds.evalTF(ntf_eq, np.exp(
            2j * np.pi * freq)))**2 * 2 / 12 * (delta / M)**2
        snr0 = ds.calculateSNR(spec0[f1_bin:f2_bin + 1], fin - f1_bin)

        # smooth, calculate the theorethical response and the SNR for V1
        spec1_smoothed = ds.circ_smooth(np.abs(spec1)**2., 16)
        Snn1 = np.abs(ds.evalTF(self.ntfs[0, 0], np.exp(
            2j * np.pi * freq)))**2 * 2 / 12 * (delta / M)**2
        snr1 = ds.calculateSNR(spec1[f1_bin:f2_bin + 1], fin - f1_bin)

        assert snr0 > 40
        assert snr1 > 40
        assert snr0 - snr1 > 40
예제 #6
0
 def setUp(self):
     fname = pkg_resources.resource_filename(
         __name__, "test_data/test_bplogsmooth.mat")
     self.data = scipy.io.loadmat(fname)
     f0 = 1./8
     OSR = 64
     order = 8
     N = 8192
     H = ds.synthesizeNTF(order, OSR, 1, 1.5, f0)
     fB = int(np.ceil(N/(2. * OSR)))
     ftest = int(mround(f0*N + 1./3*fB))
     u = 0.5*np.sin(2*np.pi*ftest/N*np.arange(N))
     v, xn, xmax, y = ds.simulateDSM(u, H)
     spec = np.fft.fft(v*ds.ds_hann(N))/(N/4)
     X = spec[:N//2 + 1]
     self.f, self.p = ds.bplogsmooth(X, ftest, f0)
 def test_bilogplot(self):
     """Test function for bilogplot()"""
     f0 = 1./8
     OSR = 64
     order = 8
     N = 8192
     H = ds.synthesizeNTF(order, OSR, 1, 1.5, f0)
     fB = int(np.ceil(N/(2. * OSR)))
     ftest = int(np.round(f0*N + 1./3 * fB))
     u = 0.5*np.sin(2*np.pi*ftest/N*np.arange(N))
     v, xn, xmax, y = ds.simulateDSM(u, H)
     spec = np.fft.fft(v*ds.ds_hann(N))/(N/4)
     X = spec[:N/2 + 1]
     plt.figure()
     # graphical function: we check it doesn't fail
     ds.bilogplot(X, f0*N, ftest, (.03, .3, .3), (-140, 0, 10, 20))
예제 #8
0
 def test_bilogplot(self):
     """Test function for bilogplot()"""
     f0 = 1. / 8
     OSR = 64
     order = 8
     N = 8192
     H = ds.synthesizeNTF(order, OSR, 1, 1.5, f0)
     fB = int(np.ceil(N / (2. * OSR)))
     ftest = int(np.round(f0 * N + 1. / 3 * fB))
     u = 0.5 * np.sin(2 * np.pi * ftest / N * np.arange(N))
     v, xn, xmax, y = ds.simulateDSM(u, H)
     spec = np.fft.fft(v * ds.ds_hann(N)) / (N / 4)
     X = spec[:N / 2 + 1]
     plt.figure()
     # graphical function: we check it doesn't fail
     ds.bilogplot(X, f0 * N, ftest, (.03, .3, .3), (-140, 0, 10, 20))
 def setUp(self):
     fname = pkg_resources.resource_filename(
         __name__, "test_data/test_bplogsmooth.mat")
     self.data = scipy.io.loadmat(fname)
     f0 = 1./8
     OSR = 64
     order = 8
     N = 8192
     H = ds.synthesizeNTF(order, OSR, 1, 1.5, f0)
     fB = int(np.ceil(N/(2. * OSR)))
     ftest = int(mround(f0*N + 1./3*fB))
     u = 0.5*np.sin(2*np.pi*ftest/N*np.arange(N))
     v, xn, xmax, y = ds.simulateDSM(u, H)
     spec = np.fft.fft(v*ds.ds_hann(N))/(N/4)
     X = spec[:N/2 + 1]
     self.f, self.p = ds.bplogsmooth(X, ftest, f0)
    def testMultipleQ2(self):
        """Test function for DS simulation with nq>1 2/2"""
        # filtering and simulation
        filtM1 = [0., 0., 0., 2., -1.]
        filtM2 = [1., -2., 1.]
        ntf_eq = zpk_multiply(self.ntfs[1, 1], self.ntfs[1, 1])
        M = self.nlev[0] - 1
        osr = 64
        f0 = 0.
        f1, f2 = ds.ds_f1f2(OSR=64, f0=0., complex_flag=False)
        delta = 2
        Amp = ds.undbv(-3) # Test tone amplitude, relative to full-scale.
        f = 0.3 # will be adjusted to a bin
        N = 2**12
        f1_bin = np.round(f1*N)
        f2_bin = np.round(f2*N)
        fin = np.round(((1 - f)/2*f1 + (f + 1)/2*f2) * N)
        # input sine
        t = np.arange(0, N).reshape((1, -1))
        u = Amp*M*np.cos((2*np.pi/N)*fin*t)
        vx, _, xmax, y = ds.simulateDSM(u, self.ABCD, nlev=self.nlev)
        # separate output #1 and output #2
        v1 = vx[0, :]
        v2 = vx[1, :]
        # filter and combine
        vf = lfilter(filtM1, [1.], v1) + lfilter(filtM2, [1.], v2)
        # compute the spectra
        window = ds.ds_hann(N)
        NBW = 1.5/N
        spec0 = np.fft.fft(vf*window)/(M*N/2)/ds.undbv(-6)
        spec1 = np.fft.fft(v1*window)/(M*N/2)/ds.undbv(-6)
        spec2 = np.fft.fft(v1*window)/(M*N/2)/ds.undbv(-6)
        freq = np.linspace(0, 0.5, N/2 + 1)

        # smooth, calculate the theorethical response and the SNR for VF
        spec0_smoothed = ds.circ_smooth(np.abs(spec0)**2., 16)
        Snn0 = np.abs(ds.evalTF(ntf_eq, np.exp(2j*np.pi*freq)))**2 * 2/12*(delta/M)**2
        snr0 = ds.calculateSNR(spec0[f1_bin:f2_bin + 1], fin - f1_bin)

        # smooth, calculate the theorethical response and the SNR for V1
        spec1_smoothed = ds.circ_smooth(np.abs(spec1)**2., 16)
        Snn1 = np.abs(ds.evalTF(self.ntfs[0, 0], np.exp(2j*np.pi*freq)))**2 * 2/12*(delta/M)**2
        snr1 = ds.calculateSNR(spec1[f1_bin:f2_bin + 1], fin - f1_bin)

        assert snr0 > 40
        assert snr1 > 40
        assert snr0-snr1 > 40
예제 #11
0
 def test_plotSpectrum(self):
     """Test function for plotSpectrum()"""
     f0 = 0
     osr = 32
     quadrature = False
     Hinf = 1.5
     order = 3
     ntf = ds.synthesizeNTF(order, osr, 0, Hinf, f0)
     f1, f2 = ds.ds_f1f2(osr, f0, quadrature)
     delta = 2
     Amp = ds.undbv(-3)
     f = 0.3
     N = 2**12
     f1_bin = np.round(f1 * N)
     f2_bin = np.round(f2 * N)
     fin = np.round(((1 - f) / 2 * f1 + (f + 1) / 2 * f2) * N)
     t = np.arange(0, N)
     u = Amp * np.cos((2 * np.pi / N) * fin * t)
     v, xn, xmax, y = ds.simulateDSM(u, ntf, 2)
     window = ds.ds_hann(N)
     NBW = 1.5 / N
     spec0 = fft(v * window) / (N / 4)
     freq = np.linspace(0, 0.5, N // 2 + 1)
     # plotting
     plt.subplot(211)
     plt.plot(freq,
              ds.dbv(spec0[:N // 2 + 1]),
              'c',
              linewidth=1,
              label='$S$')
     #plt.hold(True)
     spec_smoothed = ds.circ_smooth(np.abs(spec0)**2., 16)
     plt.plot(freq,
              ds.dbp(spec_smoothed[:N // 2 + 1]),
              'b--',
              linewidth=2,
              label='$\\mathrm{circ\\_smooth}(S)$')
     ds.plotSpectrum(spec0,
                     fin,
                     'r',
                     linewidth=2,
                     label='$\\mathrm{plotSpectrum}(S)$')
     Snn = np.abs(ds.evalTF(ntf, np.exp(
         2j * np.pi * freq)))**2 * 2 / 12 * (delta)**2
     plt.plot(freq,
              ds.dbp(Snn * NBW),
              'm',
              linewidth=1.5,
              label='$\\mathrm{from\\ NTF}$')
     plt.text(0.5,
              -3,
              'NBW = %.1e ' % NBW,
              horizontalalignment='right',
              verticalalignment='top')
     ds.figureMagic((0, 0.5), None, None, (-140, 0), 20, None)
     plt.ylabel('Spectrum [dB]')
     ax = plt.gca()
     ax.set_title('Smoothing and plotting for LOG and LIN axes')
     plt.legend(loc=4)
     plt.subplot(212)
     plt.plot(freq,
              ds.dbv(spec0[:N // 2 + 1]),
              'c',
              linewidth=1,
              label='$S$')
     #plt.hold(True)
     ds.plotSpectrum(spec0,
                     fin,
                     '--r',
                     linewidth=2,
                     label='$\\mathrm{plotSpectrum}(S)$')
     plt.plot(freq,
              ds.dbp(spec_smoothed[:N // 2 + 1]),
              'b',
              linewidth=2,
              label='$\\mathrm{circ\\_smooth}(S)$')
     plt.plot(freq,
              ds.dbp(Snn * NBW),
              'm',
              linewidth=1.5,
              label='$\\mathrm{from\\ NTF}$')
     plt.text(0.5,
              -3,
              'NBW = %.1e ' % NBW,
              horizontalalignment='right',
              verticalalignment='top')
     ds.figureMagic((0, 0.5), None, None, (-140, 0), 20, None)
     ax = plt.gca()
     ax.set_xscale('linear')
     plt.ylabel('Spectrum [dB]')
     plt.xlabel('Normalized frequency ($f_s \\rightarrow 1$)')
     plt.legend(loc=4)
예제 #12
0
 def test_ds_hann(self):
     """Test function for ds_hann()"""
     self.assertTrue(np.allclose(self.res, np.hanning(10) - ds.ds_hann(10), atol=1e-8, rtol=1e-5))
예제 #13
0
    def test_sim_noiseshaper(self):
        fmt = Q(8, 18)
        input = fmt.Signal()
        dut = Noiseshaper(input, order=8, n_lev=64)

        sim = Simulator(dut)
        sim.add_clock(1 / 100e6)

        input_hist = []
        output_hist = []
        integrators_hist = [[] for _ in dut.stages]

        n = 8192
        f_nyquist = int(np.ceil(n / (2. * dut.osr)))
        f_test = np.floor(2. / 3. * f_nyquist)
        u = dut.n_lev * 0.5 * np.sin(2 * np.pi * f_test / n * np.arange(n))

        def testbench():
            for x in u:
                yield input.eq(x)

                input_hist.append(fmt.to_float((yield input.value)))
                output_hist.append(
                    fmt.to_float((yield dut.quantized_value.value)))
                for i, integrator in enumerate(dut.stages):
                    integrators_hist[i].append(
                        fmt.to_float((yield integrator.value)))

                yield

        sim.add_sync_process(testbench)

        sim.run()

        from matplotlib import pyplot as plt
        plt.plot(np.arange(n), output_hist, linewidth=1, label="output")
        plt.plot(np.arange(n), input_hist, label="input")
        plt.legend()
        plt.show()
        for i, integrator_hist in reversed(list(enumerate(integrators_hist))):
            plt.plot(np.arange(n),
                     integrator_hist,
                     linewidth=1,
                     label="integrator {}".format(i))
        plt.legend()
        plt.show()

        import deltasigma as ds
        f = np.linspace(0, 0.5, int(n / 2. + 1))

        v, xn, xmax, y = ds.simulateDSM(u,
                                        dut.h,
                                        nlev=len(dut.quantization_values))

        spec = np.fft.fft(v * ds.ds_hann(n)) / (n / 4)
        plt.plot(f, ds.dbv(spec[:int(n / 2. + 1)]), 'b', label='Simulation DS')

        spec = np.fft.fft(output_hist * ds.ds_hann(n)) / (n / 4)
        plt.plot(f,
                 ds.dbv(spec[:int(n / 2. + 1)]),
                 'g',
                 label='Simulation HW',
                 alpha=0.7)
        ds.figureMagic([0, 0.5], 0.05, None, [-160, 0], 20, None, (16, 6),
                       'Output Spectrum')
        plt.xlabel('Normalized Frequency')
        plt.ylabel('dBFS')
        snr = ds.calculateSNR(spec[2:f_nyquist + 1], f_test - 2)
        plt.text(0.05,
                 -10,
                 'SNR = %4.1fdB @ OSR = %d' % (snr, dut.osr),
                 verticalalignment='center')
        NBW = 1.5 / n
        Sqq = 4 * ds.evalTF(dut.h, np.exp(2j * np.pi * f))**2 / 3.
        plt.plot(f, ds.dbp(Sqq * NBW), 'm', linewidth=2, label='Expected PSD')
        plt.text(0.49,
                 -90,
                 'NBW = %4.1E x $f_s$' % NBW,
                 horizontalalignment='right')
        plt.legend(loc=4)
        plt.show()

        pwm_out = py_pwm.modulate(np.array(output_hist) + 32,
                                  n_bits=6,
                                  oversampling_ratio=1)
        n = n * 64
        f = np.linspace(0, 0.5, int(n / 2. + 1))
        spec = np.fft.fft(pwm_out * ds.ds_hann(n)) / (n / 4)
        plt.plot(f, ds.dbv(spec[:int(n / 2. + 1)]), 'b', label='PWM')
        ds.figureMagic([0, 0.5], 0.05, None, [-160, 0], 20, None, (16, 6),
                       'Output Spectrum')
        plt.xlabel('Normalized Frequency')
        plt.ylabel('dBFS')
        snr = ds.calculateSNR(spec[2:f_nyquist + 1], f_test - 2)
        plt.text(0.05,
                 -10,
                 'SNR = %4.1fdB @ OSR = %d' % (snr, dut.osr),
                 verticalalignment='center')
        plt.legend(loc=4)
        plt.show()