예제 #1
0
def monophyletic_partition_discordance(tree, taxon_set_partition):
    """
    Returns the number of deep coalescences on tree `tree` that would result
    if the taxa in `tax_sets` formed K mutually-exclusive monophyletic groups,
    where K = len(tax_sets)
    `taxon_set_partition` == TaxonSetPartition
    """

    tax_sets = taxon_set_partition.subsets()
    dc_tree = dataobject.Tree()
    dc_tree.taxon_set = dataobject.TaxonSet()

    for t in range(len(tax_sets)):
        dc_tree.taxon_set.append(dataobject.Taxon(label=str(t)))

    def _get_dc_taxon(nd):
        for idx, tax_set in enumerate(tax_sets):
            if nd.taxon in tax_set:
                return dc_tree.taxon_set[idx]
        assert "taxon not found in partition: '%s'" % nd.taxon.label

    src_dc_map = {}
    for snd in tree.postorder_node_iter():
        nnd = dataobject.Node()
        src_dc_map[snd] = nnd
        children = snd.child_nodes()
        if len(children) == 0:
            nnd.taxon = _get_dc_taxon(snd)
        else:
            taxa_set = []
            for cnd in children:
                dc_node = src_dc_map[cnd]
                if len(dc_node.child_nodes()) > 1:
                    nnd.add_child(dc_node)
                else:
                    ctax = dc_node.taxon
                    if ctax is not None and ctax not in taxa_set:
                        taxa_set.append(ctax)
                    del src_dc_map[cnd]
            if len(taxa_set) > 1:
                for t in taxa_set:
                    cnd = dataobject.Node()
                    cnd.taxon = t
                    nnd.add_child(cnd)
            else:
                if len(nnd.child_nodes()) == 0:
                    nnd.taxon = taxa_set[0]
                elif len(taxa_set) == 1:
                    cnd = dataobject.Node()
                    cnd.taxon = taxa_set[0]
                    nnd.add_child(cnd)
    dc_tree.seed_node = nnd
    return len(dc_tree.leaf_nodes()) - len(tax_sets)
예제 #2
0
        def _ncl_taxa_block_to_native(self, ncl_tb):
            _LOG.debug("Converting NCL taxa block to native")
            _LOG.debug("calling NxsTaxaBlock.GetInstanceIdentifierString()")
            tbiid = ncl_tb.GetInstanceIdentifierString()
            _LOG.debug("got %s" % tbiid)
            taxa_block = self.ncl_taxa_to_native.get(tbiid)
            if taxa_block is not None:
                return taxa_block

            _LOG.debug("calling NxsTaxaBlock.GetAllLabels()")
            labels = ncl_tb.GetAllLabels()
            _LOG.debug("labels = %s" % ' '.join(labels))
            if self._taxa_to_fill is None:
                taxa_block = dataobject.TaxonSet(labels)
            else:
                taxa_block = self._taxa_to_fill
                self._taxa_to_fill = None
                taxa_block.extend([dataobject.Taxon(label=i) for i in labels])
            self.ncl_taxa_to_native[tbiid] = taxa_block
            return taxa_block
예제 #3
0
def constrained_kingman(pop_tree,
                        gene_tree_list=None,
                        rng=None,
                        gene_node_label_func=None,
                        num_genes_attr='num_genes',
                        pop_size_attr='pop_size',
                        decorate_original_tree=False):
    """
    Given a population tree, `pop_tree` this will return a *pair of
    trees*: a gene tree simulated on this population tree based on
    Kingman's n-coalescent, and population tree with the additional
    attribute 'gene_nodes' on each node, which is a list of
    uncoalesced nodes from the gene tree associated with the given
    node from the population tree.

    `pop_tree` should be a DendroPy Tree object or an object
    of a class derived from this with the following attribute
    `num_genes` -- the number of gene samples from each population in the
    present.  Each edge on the tree should also have the attribute

    `pop_size_attr` is the attribute name of the edges of `pop_tree` that
    specify the population size. By default it is `pop_size`. The should
    specify the effective *haploid* population size; i.e., number of gene
    in the population: 2 * N in a diploid population of N individuals,
    or N in a haploid population of N individuals.

    If `pop_size` is 1 or 0 or None, then the edge lengths of `pop_tree` is
    taken to be in haploid population units; i.e. where 1 unit equals 2N
    generations for a diploid population of size N, or N generations for a
    haploid population of size N. Otherwise the edge lengths of `pop_tree` is
    taken to be in generations.

    If `gene_tree_list` is given, then the gene tree is added to the
    tree block, and the tree block's taxa block will be used to manage
    the gene tree's `taxa`.

    `gene_node_label_func` is a function that takes two arguments (a string
    and an integer, respectively, where the string is the containing species
    taxon label and the integer is the gene index) and returns a label for
    the corresponding the gene node.

    if `decorate_original_tree` is True, then the list of uncoalesced nodes at
    each node of the population tree is added to the original (input) population
    tree instead of a copy.

    Note that this function does very much the same thing as `contained_coalescent()`,
    but provides a very different API.
    """

    # get our random number generator
    if rng is None:
        rng = GLOBAL_RNG  # use the global rng by default

    if gene_tree_list is not None:
        gtaxa = gene_tree_list.taxon_set
    else:
        gtaxa = dataobject.TaxonSet()

    if gene_node_label_func is None:
        gene_node_label_func = lambda x, y: "%s_%02d" % (x, y)

    # we create a set of gene nodes for each leaf node on the population
    # tree, and associate those gene nodes to the leaf by assignment
    # of 'taxon'.
    for leaf_count, leaf in enumerate(pop_tree.leaf_iter()):
        gene_nodes = []
        for gene_count in range(getattr(leaf, num_genes_attr)):
            gene_node = dataobject.Node()
            gene_node.taxon = gtaxa.require_taxon(
                label=gene_node_label_func(leaf.taxon.label, gene_count + 1))
            gene_nodes.append(gene_node)
        leaf.gene_nodes = gene_nodes

    # We iterate through the edges of the population tree in post-order,
    # i.e., visiting child edges before we visit parent edges. For
    # each edge visited, we take the genes found in the child nodes,
    # and run the coalescent simulation on them attacheded by the length
    # of the edge. Any genes that have not yet coalesced at the end of
    # this period are added to the genes of the tail (parent) node of
    # the edge.

    if decorate_original_tree:
        working_poptree = pop_tree
    else:
        # start with a new (deep) copy of the population tree so as to not
        # to change the original tree
        working_poptree = copy.deepcopy(pop_tree)

    # start with a new tree
    gene_tree = dataobject.Tree()
    gene_tree.taxon_set = gtaxa
    for edge in working_poptree.postorder_edge_iter():

        # if mrca root, run unconstrained coalescent
        if edge.head_node.parent_node is None:
            if len(edge.head_node.gene_nodes) > 1:
                final = coalescent.coalesce(nodes=edge.head_node.gene_nodes,
                                            pop_size=pop_size,
                                            period=None,
                                            rng=rng)
            else:
                final = edge.head_node.gene_nodes
            gene_tree.seed_node = final[0]
        else:

            if hasattr(edge, pop_size_attr):
                pop_size = getattr(edge, pop_size_attr)
            else:
                # this means all our time will be in population units
                pop_size = 1

            uncoal = coalescent.coalesce(nodes=edge.head_node.gene_nodes,
                                         pop_size=pop_size,
                                         period=edge.length,
                                         rng=rng)
            if not hasattr(edge.tail_node, 'gene_nodes'):
                edge.tail_node.gene_nodes = []
            edge.tail_node.gene_nodes.extend(uncoal)

    gene_tree.is_rooted = True
    if gene_tree_list is not None:
        gene_tree_list.append(gene_tree)
        return gene_tree, working_poptree
    else:
        return gene_tree, working_poptree
예제 #4
0
def birth_death(birth_rate,
                death_rate,
                birth_rate_sd=0.0,
                death_rate_sd=0.0,
                **kwargs):
    """
    Returns a birth-death tree with birth rate specified by `birth_rate`, and
    death rate specified by `death_rate`, with edge lengths in continuous (real)
    units.

    `birth_rate_sd` is the standard deviation of the normally-distributed mutation
    added to the birth rate as it is inherited by daughter nodes; if 0, birth
    rate does not evolve on the tree.

    `death_rate_sd` is the standard deviation of the normally-distributed mutation
    added to the death rate as it is inherited by daughter nodes; if 0, death
    rate does not evolve on the tree.

    Tree growth is controlled by one or more of the following arguments, of which
    at least one must be specified:

        - If `ntax` is given as a keyword argument, tree is grown until the number of
          tips == ntax.
        - If `taxon_set` is given as a keyword argument, tree is grown until the
          number of tips == len(taxon_set), and the taxa are assigned randomly to the
          tips.
        - If 'max_time' is given as a keyword argument, tree is grown for
          a maximum of `max_time`.
        - If `gsa_ntax` is given then the tree will be simulated up to this number of
          tips (or 0 tips), then a tree will be randomly selected from the
          intervals which corresond to times at which the tree had exactly `ntax`
          leaves (or len(taxon_set) tips). This allows for simulations according to
          the "General Sampling Approach" of [citeHartmannWS2010]_


    If more than one of the above is given, then tree growth will terminate when
    *any* of the termination conditions (i.e., number of tips == `ntax`, or number
    of tips == len(taxon_set) or maximum time = `max_time`) are met.

    Also accepts a Tree object (with valid branch lengths) as an argument passed
    using the keyword `tree`: if given, then this tree will be used; otherwise
    a new one will be created.

    If `assign_taxa` is False, then taxa will *not* be assigned to the tips;
    otherwise (default), taxa will be assigned. If `taxon_set` is given
    (`tree.taxon_set`, if `tree` is given), and the final number of tips on the
    tree after the termination condition is reached is less then the number of
    taxa in `taxon_set` (as will be the case, for example, when
    `ntax` < len(`taxon_set`)), then a random subset of taxa in `taxon_set` will
    be assigned to the tips of tree. If the number of tips is more than the number
    of taxa in the `taxon_set`, new Taxon objects will be created and added
    to the `taxon_set` if the keyword argument `create_required_taxa` is not given as
    False.

    Under some conditions, it is possible for all lineages on a tree to go extinct.
    In this case, if the keyword argument `repeat_until_success` is `True` (the
    default), then a new branching process is initiated.
    If `False` (default), then a TreeSimTotalExtinctionException is raised.

    A Random() object or equivalent can be passed using the `rng` keyword;
    otherwise GLOBAL_RNG is used.

    .. [citeHartmannWS2010] Hartmann, Wong, and Stadler "Sampling Trees from Evolutionary Models" Systematic Biology. 2010. 59(4). 465-476

    """
    target_num_taxa = kwargs.get('ntax')
    max_time = kwargs.get('max_time')
    taxon_set = kwargs.get('taxon_set')
    if (target_num_taxa is None) and (taxon_set is not None):
        target_num_taxa = len(taxon_set)
    elif taxon_set is None:
        taxon_set = dataobject.TaxonSet()
    gsa_ntax = kwargs.get('gsa_ntax')
    terminate_at_full_tree = False
    if target_num_taxa is None:
        if gsa_ntax is not None:
            raise ValueError(
                "When 'gsa_ntax' is used, either 'ntax' or 'taxon_set' must be used"
            )
        if max_time is None:
            raise ValueError(
                "At least one of the following must be specified: 'ntax', 'taxon_set', or 'max_time'"
            )
    else:
        if gsa_ntax is None:
            terminate_at_full_tree = True
            gsa_ntax = 1 + target_num_taxa
        elif gsa_ntax < target_num_taxa:
            raise ValueError("gsa_ntax must be greater than target_num_taxa")
    repeat_until_success = kwargs.get('repeat_until_success', True)
    rng = kwargs.get('rng', GLOBAL_RNG)

    # initialize tree
    if "tree" in kwargs:
        tree = kwargs['tree']
        if "taxon_set" in kwargs and kwargs['taxon_set'] is not tree.taxon_set:
            raise ValueError("Cannot specify both `tree` and `taxon_set`")
    else:
        tree = dataobject.Tree(taxon_set=taxon_set)
        tree.is_rooted = True
        tree.seed_node.edge.length = 0.0
        tree.seed_node.birth_rate = birth_rate
        tree.seed_node.death_rate = death_rate

    # grow tree
    leaf_nodes = tree.leaf_nodes()
    #_LOG.debug("Will generate a tree with no more than %s leaves to get a tree of %s leaves" % (str(gsa_ntax), str(target_num_taxa)))
    curr_num_leaves = len(leaf_nodes)
    total_time = 0
    # for the GSA simulations targetted_time_slices is a list of tuple
    #   the first element in the tuple is the duration of the amount
    #   that the simulation spent at the (targetted) number of taxa
    #   and a list of edge information. The list of edge information includes
    #   a list of terminal edges in the tree and the length for that edge
    #   that marks the beginning of the time slice that corresponds to the
    #   targetted number of taxa.

    targetted_time_slices = []
    extinct_tips = []
    while True:
        if gsa_ntax is None:
            assert (max_time is not None)
            if total_time >= max_time:
                break
        elif curr_num_leaves >= gsa_ntax:
            break

        # get vector of birth/death probabilities, and
        # associate with nodes/events
        event_rates = []
        event_nodes = []
        for nd in leaf_nodes:
            if not hasattr(nd, 'birth_rate'):
                nd.birth_rate = birth_rate
            if not hasattr(nd, 'death_rate'):
                nd.death_rate = death_rate
            event_rates.append(nd.birth_rate)
            event_nodes.append((nd, True))  # birth event = True
            event_rates.append(nd.death_rate)
            event_nodes.append((nd, False))  # birth event = False; i.e. death

        # get total probability of any birth/death
        rate_of_any_event = sum(event_rates)

        # waiting time based on above probability
        #_LOG.debug("rate_of_any_event = %f" % (rate_of_any_event))
        waiting_time = rng.expovariate(rate_of_any_event)
        #_LOG.debug("Drew waiting time of %f from hazard parameter of %f" % (waiting_time, rate_of_any_event))

        if (gsa_ntax is not None) and (curr_num_leaves == target_num_taxa):
            edge_and_start_length = []
            for nd in leaf_nodes:
                e = nd.edge
                edge_and_start_length.append((e, e.length))
            targetted_time_slices.append((waiting_time, edge_and_start_length))
            #_LOG.debug("Recording slice with %d edges" % len(edge_and_start_length))
            if terminate_at_full_tree:
                break

        # add waiting time to nodes
        for nd in leaf_nodes:
            try:
                nd.edge.length += waiting_time
            except TypeError:
                nd.edge.length = waiting_time
        #_LOG.debug("Next waiting_time = %f" % waiting_time)
        total_time += waiting_time

        # if event occurs within time constraints
        if max_time is None or total_time <= max_time:

            # normalize probability
            for i in xrange(len(event_rates)):
                event_rates[i] = event_rates[i] / rate_of_any_event

            # select node/event and process
            nd, birth_event = probability.weighted_choice(event_nodes,
                                                          event_rates,
                                                          rng=rng)
            leaf_nodes.remove(nd)
            curr_num_leaves -= 1
            if birth_event:
                #_LOG.debug("Speciation")
                c1 = nd.new_child()
                c2 = nd.new_child()
                c1.edge.length = 0
                c2.edge.length = 0
                c1.birth_rate = nd.birth_rate + rng.gauss(0, birth_rate_sd)
                c1.death_rate = nd.death_rate + rng.gauss(0, death_rate_sd)
                c2.birth_rate = nd.birth_rate + rng.gauss(0, birth_rate_sd)
                c2.death_rate = nd.death_rate + rng.gauss(0, death_rate_sd)
                leaf_nodes.append(c1)
                leaf_nodes.append(c2)
                curr_num_leaves += 2
            else:
                #_LOG.debug("Extinction")
                if curr_num_leaves > 0:
                    #_LOG.debug("Will delete " + str(id(nd)) + " with parent = " + str(id(nd.parent_node)))
                    extinct_tips.append(nd)
                else:
                    if (gsa_ntax is not None):
                        if (len(targetted_time_slices) > 0):
                            break
                    if not repeat_until_success:
                        raise TreeSimTotalExtinctionException()
                    # We are going to basically restart the simulation because the tree has gone extinct (without reaching the specified ntax)
                    leaf_nodes = [tree.seed_node]
                    curr_num_leaves = 1
                    for nd in tree.seed_node.child_nodes():
                        treemanip.prune_subtree(tree,
                                                nd,
                                                delete_outdegree_one=False)
                    extinct_tips = []
                    total_time = 0
            assert (curr_num_leaves == len(leaf_nodes))
            #_LOG.debug("Current tree \n%s" % (tree.as_ascii_plot(plot_metric='length', show_internal_node_labels=True)))
    #tree._debug_tree_is_valid()
    #_LOG.debug("Terminated with %d leaves (%d, %d  according to len(leaf_nodes))" % (curr_num_leaves, len(leaf_nodes), len(tree.leaf_nodes())))
    if gsa_ntax is not None:
        total_duration_at_target_n_tax = 0.0
        for i in targetted_time_slices:
            total_duration_at_target_n_tax += i[0]
        r = rng.random() * total_duration_at_target_n_tax
        #_LOG.debug("Selected rng = %f out of (0, %f)" % (r, total_duration_at_target_n_tax))
        selected_slice = None
        for n, i in enumerate(targetted_time_slices):
            r -= i[0]
            if r < 0.0:
                selected_slice = i
        assert (selected_slice is not None)
        #_LOG.debug("Selected time slice index %d" % n)
        edges_at_slice = selected_slice[1]
        last_waiting_time = selected_slice[0]
        for e, prev_length in edges_at_slice:
            daughter_nd = e.head_node
            for nd in daughter_nd.child_nodes():
                treemanip.prune_subtree(tree, nd, delete_outdegree_one=False)
                #_LOG.debug("After pruning %s:\n%s" % (str(id(nd)), tree.as_ascii_plot(plot_metric='length', show_internal_node_labels=True)))
                try:
                    extinct_tips.remove(nd)
                except:
                    pass
            try:
                extinct_tips.remove(daughter_nd)
            except:
                pass
            e.length = prev_length + last_waiting_time

#     tree._debug_tree_is_valid()
#     for nd in extinct_tips:
#         _LOG.debug("Will be deleting " + str(id(nd)))

    for nd in extinct_tips:
        bef = len(tree.leaf_nodes())
        while (nd.parent_node is not None) and (len(
                nd.parent_node.child_nodes()) == 1):
            _LOG.debug("Will be pruning %d rather than its only child (%d)" %
                       (id(nd.parent_node), id(nd)))
            nd = nd.parent_node
#         _LOG.debug("Deleting " + str(nd.__dict__) + '\n' + str(nd.edge.__dict__))
#         for n, pnd in enumerate(tree.postorder_node_iter()):
#             _LOG.debug("%d %s" % (n, repr(pnd)))
#        _LOG.debug("Before prune of %s:\n%s" % (str(id(nd)), tree.as_ascii_plot(plot_metric='length', show_internal_node_labels=True)))
        if nd.parent_node:
            treemanip.prune_subtree(tree, nd, delete_outdegree_one=False)
        _LOG.debug("After prune (went from %d to %d leaves):\n%s" %
                   (bef, len(tree.leaf_nodes()),
                    tree.as_ascii_plot(plot_metric='length',
                                       show_internal_node_labels=True)))


#         _LOG.debug("Deleted " + str(nd.__dict__))
#         for n, pnd in enumerate(tree.postorder_node_iter()):
#             _LOG.debug("%d %s" % (n, repr(pnd)))
#         tree._debug_tree_is_valid()
    tree.delete_outdegree_one_nodes()
    #    tree._debug_tree_is_valid()
    #    _LOG.debug("After deg2suppression:\n%s" % (tree.as_ascii_plot(plot_metric='length', show_internal_node_labels=True)))

    if kwargs.get("assign_taxa", True):
        tree.randomly_assign_taxa(create_required_taxa=True, rng=rng)

    # return
    return tree
예제 #5
0
def discrete_birth_death(birth_rate,
                         death_rate,
                         birth_rate_sd=0.0,
                         death_rate_sd=0.0,
                         **kwargs):
    """
    Returns a birth-death tree with birth rate specified by `birth_rate`, and
    death rate specified by `death_rate`, with edge lengths in discrete (integer)
    units.

    `birth_rate_sd` is the standard deviation of the normally-distributed mutation
    added to the birth rate as it is inherited by daughter nodes; if 0, birth
    rate does not evolve on the tree.

    `death_rate_sd` is the standard deviation of the normally-distributed mutation
    added to the death rate as it is inherited by daughter nodes; if 0, death
    rate does not evolve on the tree.

    Tree growth is controlled by one or more of the following arguments, of which
    at least one must be specified:

        - If `ntax` is given as a keyword argument, tree is grown until the number of
          tips == ntax.
        - If `taxon_set` is given as a keyword argument, tree is grown until the
          number of tips == len(taxon_set), and the taxa are assigned randomly to the
          tips.
        - If 'max_time' is given as a keyword argument, tree is grown for `max_time`
          number of generations.

    If more than one of the above is given, then tree growth will terminate when
    *any* of the termination conditions (i.e., number of tips == `ntax`, or number
    of tips == len(taxon_set) or number of generations = `max_time`) are met.

    Also accepts a Tree object (with valid branch lengths) as an argument passed
    using the keyword `tree`: if given, then this tree will be used; otherwise
    a new one will be created.

    If `assign_taxa` is False, then taxa will *not* be assigned to the tips;
    otherwise (default), taxa will be assigned. If `taxon_set` is given
    (`tree.taxon_set`, if `tree` is given), and the final number of tips on the
    tree after the termination condition is reached is less then the number of
    taxa in `taxon_set` (as will be the case, for example, when
    `ntax` < len(`taxon_set`)), then a random subset of taxa in `taxon_set` will
    be assigned to the tips of tree. If the number of tips is more than the number
    of taxa in the `taxon_set`, new Taxon objects will be created and added
    to the `taxon_set` if the keyword argument `create_required_taxa` is not given as
    False.

    Under some conditions, it is possible for all lineages on a tree to go extinct.
    In this case, if the keyword argument `repeat_until_success` is `True`, then a new
    branching process is initiated.
    If `False` (default), then a TreeSimTotalExtinctionException is raised.

    A Random() object or equivalent can be passed using the `rng` keyword;
    otherwise GLOBAL_RNG is used.
    """
    if 'ntax' not in kwargs \
        and 'taxon_set' not in kwargs \
        and 'max_time' not in kwargs:
        raise ValueError(
            "At least one of the following must be specified: 'ntax', 'taxon_set', or 'max_time'"
        )
    target_num_taxa = None
    taxon_set = None
    target_num_gens = kwargs.get('max_time', None)
    if 'taxon_set' in kwargs:
        taxon_set = kwargs.get('taxon_set')
        target_num_taxa = kwargs.get('ntax', len(taxon_set))
    elif 'ntax' in kwargs:
        target_num_taxa = kwargs['ntax']
    if taxon_set is None:
        taxon_set = dataobject.TaxonSet()
    repeat_until_success = kwargs.get('repeat_until_success', False)
    rng = kwargs.get('rng', GLOBAL_RNG)

    # grow tree
    if "tree" in kwargs:
        tree = kwargs['tree']
        if "taxon_set" in kwargs and kwargs['taxon_set'] is not tree.taxon_set:
            raise ValueError("Cannot specify both `tree` and `taxon_set`")
    else:
        tree = dataobject.Tree(taxon_set=taxon_set)
        tree.is_rooted = True
        tree.seed_node.edge.length = 0
        tree.seed_node.birth_rate = birth_rate
        tree.seed_node.death_rate = death_rate
    leaf_nodes = tree.leaf_nodes()
    num_gens = 0
    while (target_num_taxa is None or len(leaf_nodes) < target_num_taxa) \
            and (target_num_gens is None or num_gens < target_num_gens):
        for nd in leaf_nodes:
            if not hasattr(nd, 'birth_rate'):
                nd.birth_rate = birth_rate
            if not hasattr(nd, 'death_rate'):
                nd.death_rate = death_rate
            try:
                nd.edge.length += 1
            except TypeError:
                nd.edge.length = 1
            u = rng.uniform(0, 1)
            if u < nd.birth_rate:
                c1 = nd.new_child()
                c2 = nd.new_child()
                c1.edge.length = 0
                c2.edge.length = 0
                c1.birth_rate = nd.birth_rate + rng.gauss(0, birth_rate_sd)
                c1.death_rate = nd.death_rate + rng.gauss(0, death_rate_sd)
                c2.birth_rate = nd.birth_rate + rng.gauss(0, birth_rate_sd)
                c2.death_rate = nd.death_rate + rng.gauss(0, death_rate_sd)
            elif u > nd.birth_rate and u < (nd.birth_rate + nd.death_rate):
                if nd is not tree.seed_node:
                    treemanip.prune_subtree(tree, nd)
                elif not repeat_until_success:
                    # all lineages are extinct: raise exception
                    raise TreeSimTotalExtinctionException()
                else:
                    # all lineages are extinct: repeat
                    num_gens = 0

        num_gens += 1
        leaf_nodes = tree.leaf_nodes()

    # If termination condition specified by ntax or taxon_set, then the last
    # split will have a daughter edges of length == 0;
    # so we continue growing the edges until the next birth/death event *or*
    # the max number of generations condition is given and met
    gens_to_add = 0
    while (target_num_gens is None or num_gens < target_num_gens):
        u = rng.uniform(0, 1)
        if u < (birth_rate + death_rate):
            break
        gens_to_add += 1
    for nd in tree.leaf_nodes():
        nd.edge.length += gens_to_add

    if kwargs.get("assign_taxa", True):
        tree.randomly_assign_taxa(create_required_taxa=True, rng=rng)

    # return
    return tree
예제 #6
0
def tree_from_token_stream(stream_tokenizer, **kwargs):
    """
    Processes a (SINGLE) TREE statement. Assumes that the input stream is
    located at the beginning of the statement (i.e., the first non-comment
    token should be the opening parenthesis of the tree definition).

    str_to_taxon kwarg (if used) must supply the StrToTaxon interface).
    """
    translate_dict = kwargs.get("translate_dict", None)
    encode_splits = kwargs.get("encode_splits", False)
    rooting_interpreter = kwargs.get("rooting_interpreter",
                                     RootingInterpreter(**kwargs))
    finish_node_func = kwargs.get("finish_node_func", None)
    edge_len_type = kwargs.get("edge_len_type", float)
    taxon_set = kwargs.get("taxon_set", None)
    suppress_internal_node_taxa = kwargs.get("suppress_internal_node_taxa",
                                             False)
    store_tree_weights = kwargs.get("store_tree_weights", False)
    extract_comment_metadata = kwargs.get('extract_comment_metadata', False)
    case_sensitive_taxon_labels = kwargs.get('case_sensitive_taxon_labels',
                                             False)
    allow_repeated_use = kwargs.get('allow_repeated_use', False)
    stream_tokenizer_extract_comment_metadata_setting = stream_tokenizer.extract_comment_metadata
    stream_tokenizer.extract_comment_metadata = extract_comment_metadata
    if taxon_set is None:
        taxon_set = dataobject.TaxonSet()
    tree = dataobject.Tree(taxon_set=taxon_set)

    stream_tokenizer.tree_rooting_comment = None  # clear previous comment
    stream_tokenizer.clear_comment_metadata()
    token = stream_tokenizer.read_next_token()
    if not token:
        return None
    tree.is_rooted = rooting_interpreter.interpret_as_rooted(
        stream_tokenizer.tree_rooting_comment)
    #    if stream_tokenizer.tree_rooting_comment is not None:
    #        tree.is_rooted = rooting_interpreter.interpret_as_rooted(stream_tokenizer.tree_rooting_comment)
    #    elif rooting_interpreter.interpret_as_rooted(stream_tokenizer.tree_rooting_comment):
    #        tree_is_rooted = True

    if store_tree_weights and stream_tokenizer.tree_weight_comment is not None:
        try:
            weight_expression = stream_tokenizer.tree_weight_comment.split(
                ' ')[1]
            tree.weight = eval("/".join(
                ["float(%s)" % cv for cv in weight_expression.split('/')]))
        except IndexError:
            pass
        except ValueError:
            pass
        stream_tokenizer.tree_weight_comment = None

    if encode_splits:
        if len(taxon_set) == 0:
            raise Exception("When encoding splits on a tree as it is being parsed, a "
                + "fully pre-populated TaxonSet object must be specified using the 'taxon_set' keyword " \
                + "to avoid taxon/split bitmask values changing as new Taxon objects are created " \
                + "and added to the TaxonSet.")
        if tree.is_rooted:
            tree.split_edges = {}
        else:
            atb = taxon_set.all_taxa_bitmask()
            d = containers.NormalizedBitmaskDict(mask=atb)
            tree.split_edges = d
        split_map = tree.split_edges

    stt = kwargs.get('str_to_taxon')
    if stt is None:
        stt = StrToTaxon(taxon_set,
                         translate_dict,
                         allow_repeated_use=allow_repeated_use,
                         case_sensitive=case_sensitive_taxon_labels)

    tree.seed_node = dataobject.Node()
    curr_node = tree.seed_node
    if encode_splits:
        curr_node.edge.split_bitmask = 0L

    ### NHX format support ###
    def store_node_comments(active_node):
        if stream_tokenizer.comments:
            active_node.comments.extend(stream_tokenizer.comments)

    def store_comment_metadata(target):
        if extract_comment_metadata:
            if stream_tokenizer.has_comment_metadata():
                comment_metadata = stream_tokenizer.comment_metadata
                try:
                    target.comment_metadata.update(comment_metadata)
                except AttributeError:
                    target.comment_metadata = comment_metadata
                stream_tokenizer.clear_comment_metadata()
            elif not hasattr(target, "comment_metadata"):
                target.comment_metadata = {}

    # store and clear comments
    tree.comments = stream_tokenizer.comments
    stream_tokenizer.clear_comments()
    store_comment_metadata(tree)

    while True:
        if not token or token == ';':
            if curr_node is not tree.seed_node:
                raise stream_tokenizer.data_format_error(
                    "Unbalanced parentheses -- not enough ')' characters found in tree description"
                )
            if encode_splits:
                split_map[curr_node.edge.split_bitmask] = curr_node.edge
            break
        if token == '(':
            if not curr_node.parent_node:
                if curr_node.child_nodes():
                    raise stream_tokenizer.data_format_error(
                        "Unexpected '(' after the tree description.  Expecting a label for the root or a ;"
                    )
            tmp_node = dataobject.Node()
            if encode_splits:
                tmp_node.edge.split_bitmask = 0L
            curr_node.add_child(tmp_node)
            curr_node = tmp_node
            token = stream_tokenizer.read_next_token()
            store_node_comments(curr_node)
            store_comment_metadata(curr_node)
        elif token == ',':
            tmp_node = dataobject.Node()
            if curr_node.is_leaf() and not curr_node.taxon:
                #                 curr_node.taxon = taxon_set.Taxon(oid="UNAMED_" + str(id(curr_node)), label='')
                #                 taxon_set.add(curr_node.taxon)
                raise stream_tokenizer.data_format_error(
                    "Missing taxon specifier in a tree -- found either a '(,' or ',,' construct."
                )
            p = curr_node.parent_node
            if not p:
                raise stream_tokenizer.data_format_error(
                    "Comma found one the 'outside' of a newick tree description"
                )
            if encode_splits:
                tmp_node.edge.split_bitmask = 0L
                e = curr_node.edge
                u = e.split_bitmask
                split_map[u] = e
                p.edge.split_bitmask |= u
            if finish_node_func is not None:
                finish_node_func(curr_node, tree)
            p.add_child(tmp_node)
            curr_node = tmp_node
            token = stream_tokenizer.read_next_token()
            store_node_comments(curr_node)
            store_comment_metadata(curr_node)
        else:
            if token == ')':
                if curr_node.is_leaf() and not curr_node.taxon:
                    raise stream_tokenizer.data_format_error(
                        "Missing taxon specifier in a tree -- found either a '(,' or ',,' construct."
                    )
                p = curr_node.parent_node
                if not p:
                    raise stream_tokenizer.data_format_error(
                        "Unbalanced parentheses -- too many ')' characters found in tree description"
                    )
                if encode_splits:
                    e = curr_node.edge
                    u = e.split_bitmask
                    p.edge.split_bitmask |= u
                    split_map[u] = curr_node.edge
                if finish_node_func is not None:
                    finish_node_func(curr_node, tree)
                curr_node = p
            else:
                is_leaf = curr_node.is_leaf()
                if is_leaf:
                    if curr_node.taxon:
                        raise stream_tokenizer.data_format_error(
                            "Multiple labels found for the same leaf (taxon '%s' and label '%s')"
                            % (str(curr_node.taxon), token))
                    try:
                        t = stt_require_taxon(stt, label=token)
                    except StrToTaxon.MultipleTaxonUseError, e:
                        raise stream_tokenizer.data_format_error(e.msg)
                else:
                    if curr_node.label:
                        raise stream_tokenizer.data_format_error(
                            "Multiple labels found for the same leaf (taxon '%s' and label '%s')"
                            % (curr_node.label, token))
                    if suppress_internal_node_taxa:
                        t = None
                    else:
                        try:
                            t = stt.get_taxon(label=token)
                        except StrToTaxon.MultipleTaxonUseError, e:
                            raise stream_tokenizer.data_format_error(e.msg)
예제 #7
0
 def _get_contained_taxon_set(self):
     if self._contained_taxon_set is None:
         self._contained_taxon_set = dataobject.TaxonSet()
     return self._contained_taxon_set