예제 #1
0
from deoxys.model import load_model, Model
import numpy as np
import matplotlib.pyplot as plt
import h5py

deo = load_model(
    # '../../oxford_perf/logs_db/5e2e2349a356a4893813c8f7/model/model.030.h5')
    # '../../oxford_perf/log_db_ex2/5e3e87d2b26396ccbca9c3e7/model/model.030.h5')
    # '../../hn_perf/logs_saved_9epochs/model/model.006.h5')
    '../../hn_perf/exps/model.014.h5')
# '../../mnist/logs/model/model.012.h5')

if __name__ == '__main__':
    deo.model.summary()

    dr = deo.data_reader

    imgs = []
    targets = []

    datagen = dr.val_generator.generate()
    # datagen.__next__()
    # datagen.__next__()
    # x, y = datagen.__next__()

    indexes = [10, 205, 230, 390, 834]
    k = 5

    for i, (x, y) in enumerate(datagen):
        for index in indexes:
            if i == index // 4:
예제 #2
0
from deoxys.keras import backend as K
from deoxys.model import load_model, Model
import numpy as np
import matplotlib.pyplot as plt
import h5py
from PIL import Image

if __name__ == '__main__':

    # load model
    deo = load_model('../../hn_perf/exps/model.014.h5')

    # get data reader
    dr = deo.data_reader

    # get input images, targets, predictions
    imgs = []
    targets = []

    datagen = dr.val_generator.generate()

    indexes = [10, 205, 230, 390, 834]
    k = len(indexes)

    for i, (x, y) in enumerate(datagen):
        for index in indexes:
            if i == index // 4:
                imgs.append(x[index % 4])
                targets.append(y[index % 4])
        if len(imgs) == k:
            break
예제 #3
0
from deoxys.model import model_from_full_config, load_model

import matplotlib.pyplot as plt

if __name__ == '__main__':
    # model = model_from_full_config('config/2d_unet_CT_W_PET.json')

    model = load_model('../../hn_perf/2d_unet/model/model.014.h5')

    # # data handling here

    # model.predict(data)

    model.model.summary()

    res = model.activation_maximization('conv2d_1')

    plt.imshow(res[0][..., 0], )

    plt.show()