def payoff_table_method( problem: MOProblem, initial_guess: Optional[np.ndarray] = None, solver_method: Optional[Union[ScalarMethod, str]] = "scipy_de", ) -> Tuple[np.ndarray, np.ndarray]: """Uses the payoff table method to solve for the ideal and nadir points of a MOProblem. Call through to payoff_table_method_general. Args: problem (MOProblem): The problem defined as a MOProblem class instance. initial_guess (Optional[np.ndarray]): The initial guess of decision variables to be used in the solver. If None, uses the lower bounds defined for the variables in MOProblem. Defaults to None. solver_method (Optional[Union[ScalarMethod, str]]): The method used to minimize the invidual problems in the payoff table method. Defaults to 'scipy_de'. Returns: Tuple[np.ndarray, np.ndarray]: The ideal and nadir points """ if problem.n_of_constraints > 0: constraints = lambda x: problem.evaluate(x).constraints.squeeze() else: constraints = None return payoff_table_method_general( lambda xs: problem.evaluate(xs).objectives, problem.n_of_objectives, problem.get_variable_bounds(), constraints, initial_guess, solver_method, )
def solve_pareto_front_representation( problem: MOProblem, step: Optional[Union[np.ndarray, float]] = 0.1, eps: Optional[float] = 1e-6, solver_method: Optional[Union[ScalarMethod, str]] = "scipy_de", ) -> Tuple[np.ndarray, np.ndarray]: """Pass through to solve_pareto_front_representation_general when the problem for which the front is being calculated for is defined as an MOProblem object. Computes a representation of a Pareto efficient front from a multiobjective minimizatino problem. Does so by generating an evenly spaced set of reference points (in the objective space), in the space spanned by the supplied ideal and nadir points. The generated reference points are then used to formulate achievement scalaraization problems, which when solved, yield a representation of a Pareto efficient solution. Args: problem (MOProblem): The multiobjective minimization problem for which the front is to be solved for. step (Optional[Union[np.ndarray, float]], optional): Either a float or an array of floats. If a single float is given, generates reference points with the objectives having values a step apart between the ideal and nadir points. If an array of floats is given, use the steps defined in the array for each objective's values. Default to 0.1. eps (Optional[float], optional): An offset to be added to the nadir value to keep the nadir inside the range when generating reference points. Defaults to 1e-6. solver_method (Optional[Union[ScalarMethod, str]], optional): The method used to minimize the achievement scalarization problems arising when calculating Pareto efficient solutions. Defaults to "scipy_de". Returns: Tuple[np.ndarray, np.ndarray]: A tuple containing representations of the Pareto optimal variable values, and the corresponsing objective values. """ if problem.n_of_constraints > 0: constraints = lambda x: problem.evaluate(x).constraints.squeeze() else: constraints = None var_values, obj_values = solve_pareto_front_representation_general( lambda x: problem.evaluate(x).objectives, problem.n_of_objectives, problem.get_variable_bounds(), step, eps, problem.ideal * problem._max_multiplier, problem.nadir * problem._max_multiplier, constraints, solver_method, ) return var_values, obj_values * problem._max_multiplier
def __init__(self, problem: MOProblem, scalar_method: Optional[ScalarMethod] = None): # check if ideal and nadir are defined if problem.ideal is None or problem.nadir is None: # TODO: use same method as defined in scalar_method ideal, nadir = payoff_table_method(problem) self._ideal = ideal self._nadir = nadir else: self._ideal = problem.ideal self._nadir = problem.nadir self._scalar_method = scalar_method # generate Pareto optimal starting point asf = SimpleASF(np.ones(self._ideal.shape)) scalarizer = Scalarizer( lambda x: problem.evaluate(x).objectives, asf, scalarizer_args={"reference_point": np.atleast_2d(self._ideal)}, ) if problem.n_of_constraints > 0: _con_eval = lambda x: problem.evaluate(x).constraints.squeeze() else: _con_eval = None solver = ScalarMinimizer( scalarizer, problem.get_variable_bounds(), constraint_evaluator=_con_eval, method=self._scalar_method, ) # TODO: fix tools to check for scipy methods in general and delete me! solver._use_scipy = True res = solver.minimize(problem.get_variable_upper_bounds() / 2) if res["success"]: self._current_solution = res["x"] self._current_objectives = problem.evaluate( self._current_solution).objectives.squeeze() self._archive_solutions = [] self._archive_objectives = [] self._state = "classify" super().__init__(problem)
def __init__( self, problem: MOProblem, ideal: np.ndarray, nadir: np.ndarray, epsilon: float = 1e-6, objective_names: Optional[List[str]] = None, minimize: Optional[List[int]] = None, ): if not ideal.shape == nadir.shape: raise NautilusException( "The dimensions of the ideal and nadir point do not match.") if objective_names: if not len(objective_names) == ideal.shape[0]: raise NautilusException( "The supplied objective names must have a length equal to " "the numbr of objectives.") self._objective_names = objective_names else: self._objective_names = [ f"f{i + 1}" for i in range(ideal.shape[0]) ] if minimize: if not len(objective_names) == ideal.shape[0]: raise NautilusException( "The minimize list must have " "as many elements as there are objectives.") self._minimize = minimize else: self._minimize = [1 for _ in range(ideal.shape[0])] # initialize method with problem super().__init__(problem) self._problem = problem self._objectives: Callable = lambda x: self._problem.evaluate( x).objectives self._variable_bounds: Union[np.ndarray, None] = problem.get_variable_bounds() self._constraints: Optional[ Callable] = lambda x: self._problem.evaluate(x).constraints # Used to calculate the utopian point from the ideal point self._epsilon = epsilon self._ideal = ideal self._nadir = nadir # calculate utopian vector self._utopian = [ideal_i - self._epsilon for ideal_i in self._ideal] # bounds of the reachable region self._lower_bounds: List[np.ndarray] = [] self._upper_bounds: List[np.ndarray] = [] # current iteration step number self._step_number = 1 # iteration points self._zs: np.ndarray = [] # solutions, objectives, and distances for each iteration self._xs: np.ndarray = [] self._fs: np.ndarray = [] self._ds: np.ndarray = [] # The current reference point self._q: Union[None, np.ndarray] = None # preference information self._preference_method = None self._preference_info = None self._preferential_factors = None # number of total iterations and iterations left self._n_iterations = None self._n_iterations_left = None # flags for the iteration phase # not utilized atm self._use_previous_preference: bool = False self._step_back: bool = False self._short_step: bool = False self._first_iteration: bool = True # evolutionary method for minimizing self._method_de: ScalarMethod = ScalarMethod( lambda x, _, **y: differential_evolution(x, **y), method_args={ "disp": False, "polish": False, "tol": 0.000001, "popsize": 10, "maxiter": 50000 }, use_scipy=True)
def __init__( self, problem: MOProblem, ideal: np.ndarray, nadir: np.ndarray, epsilon: float = 1e-6, objective_names: Optional[List[str]] = None, minimize: Optional[List[int]] = None, ): if not ideal.shape == nadir.shape: raise RPMException( "The dimensions of the ideal and nadir point do not match.") if objective_names: if not len(objective_names) == ideal.shape[0]: raise RPMException( "The supplied objective names must have a leangth equal to " "the number of objectives.") self._objective_names = objective_names else: self._objective_names = [ f"f{i + 1}" for i in range(ideal.shape[0]) ] if minimize: if not len(objective_names) == ideal.shape[0]: raise RPMException("The minimize list must have " "as many elements as there are objectives.") self._minimize = minimize else: self._minimize = [1 for _ in range(ideal.shape[0])] # initialize method with problem super().__init__(problem) self._problem = problem self._objectives: Callable = lambda x: self._problem.evaluate( x).objectives self._variable_bounds: Union[np.ndarray, None] = problem.get_variable_bounds() self._constraints: Optional[ Callable] = lambda x: self._problem.evaluate(x).constraints self._ideal = ideal self._nadir = nadir self._utopian = ideal - epsilon self._n_objectives = self._ideal.shape[0] # current iteration step number self._h = 1 # solutions in decision and objective space, distances and referation points for each iteration self._xs = [None] * 10 self._fs = [None] * 10 self._ds = [None] * 10 self._qs = [None] * 10 # perturbed reference points self._pqs = [None] * 10 # additional solutions self._axs = [None] * 10 self._afs = [None] * 10 # current reference point self._q: Union[None, np.ndarray] = None # weighting vector for achievement function self._w: np.ndarray = [] # evolutionary method for minimizing self._method_de: ScalarMethod = ScalarMethod( lambda x, _, **y: differential_evolution(x, **y), method_args={ "disp": False, "polish": False, "tol": 0.000001, "popsize": 10, "maxiter": 50000 }, use_scipy=True, )