예제 #1
0
def test_mcb(knn_methods):
    pool_classifiers, X_dsel, y_dsel, X_test, y_test = setup_classifiers()
    rng = np.random.RandomState(123456)

    mcb = MCB(pool_classifiers, random_state=rng, knn_classifier=knn_methods)
    mcb.fit(X_dsel, y_dsel)
    assert np.isclose(mcb.score(X_test, y_test), 0.96276595744680848)
예제 #2
0
def test_mcb():
    pool_classifiers, X_dsel, y_dsel, X_test, y_test = setup_classifiers()
    rng = np.random.RandomState(123456)

    mcb = MCB(pool_classifiers, rng=rng, DFP=True)
    mcb.fit(X_dsel, y_dsel)
    assert np.isclose(mcb.score(X_test, y_test), 0.8606060606060606)
def test_mcb():
    pool_classifiers, X_dsel, y_dsel, X_test, y_test = setup_classifiers()
    rng = np.random.RandomState(123456)

    mcb = MCB(pool_classifiers, random_state=rng)
    mcb.fit(X_dsel, y_dsel)
    assert np.isclose(mcb.score(X_test, y_test), 0.7196969696969697)
예제 #4
0
def test_mcb():
    pool_classifiers, X_dsel, y_dsel, X_test, y_test = setup_classifiers()
    rng = np.random.RandomState(123456)

    mcb = MCB(pool_classifiers,
              random_state=rng,
              DFP=True,
              with_IH=True,
              IH_rate=0.1)
    mcb.fit(X_dsel, y_dsel)
    assert np.isclose(mcb.score(X_test, y_test), 0.9)
예제 #5
0
    # can estimate probabilities
    pool_classifiers = RandomForestClassifier(n_estimators=10, max_depth=5)
    pool_classifiers.fit(X_train, y_train)

    # Initialize a DS technique. Here we specify the size of the region of competence (5 neighbors)
    knorau = KNORAU(pool_classifiers)
    kne = KNORAE(pool_classifiers, k=5)
    desp = DESP(pool_classifiers, k=5)
    ola = OLA(pool_classifiers, k=5)
    mcb = MCB(pool_classifiers, k=5)
    meta = METADES(pool_classifiers, k=5)

    # Fit the DS techniques
    knorau.fit(X_dsel, y_dsel)
    kne.fit(X_dsel, y_dsel)
    desp.fit(X_dsel, y_dsel)
    meta.fit(X_dsel, y_dsel)
    ola.fit(X_dsel, y_dsel)
    mcb.fit(X_dsel, y_dsel)

    # Calculate classification accuracy of each technique
    print('Classification accuracy RF: ', RF.score(X_test, y_test))
    print('Evaluating DS techniques:')
    print('Classification accuracy KNORAU: ', knorau.score(X_test, y_test))
    print('Classification accuracy KNORA-Eliminate: ',
          kne.score(X_test, y_test))
    print('Classification accuracy DESP: ', desp.score(X_test, y_test))
    print('Classification accuracy OLA: ', ola.score(X_test, y_test))
    print('Classification accuracy MCB: ', mcb.score(X_test, y_test))
    print('Classification accuracy META-DES: ', meta.score(X_test, y_test))
예제 #6
0
meta.fit(X_dsel, y_dsel)
ola.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)

###############################################################################
# Plotting the results
# -----------------------
# Let's now evaluate the methods on the test set.

rf_score = RF.score(X_test, y_test)
stacked_score = stacked.score(X_test, y_test)
knorau_score = knorau.score(X_test, y_test)
kne_score = kne.score(X_test, y_test)
desp_score = desp.score(X_test, y_test)
ola_score = ola.score(X_test, y_test)
mcb_score = mcb.score(X_test, y_test)
meta_score = meta.score(X_test, y_test)
print('Classification accuracy RF: ', rf_score)
print('Classification accuracy Stacked: ', stacked_score)
print('Evaluating DS techniques:')
print('Classification accuracy KNORA-U: ', knorau_score)
print('Classification accuracy KNORA-E: ', kne_score)
print('Classification accuracy DESP: ', desp_score)
print('Classification accuracy OLA: ', ola_score)
print('Classification accuracy MCB: ', mcb_score)
print('Classification accuracy META-DES: ', meta_score)

cmap = get_cmap('Dark2')
colors = [cmap(i) for i in np.linspace(0, 1, 7)]
labels = ['RF', 'Stacked', 'KNORA-U', 'KNORA-E', 'DESP', 'OLA', 'MCB',
          'META-DES']
예제 #7
0
def main():
    ###############################################################################
    # Preparing the dataset
    # ---------------------
    # In this part we load the breast cancer dataset from scikit-learn and
    # preprocess it in order to pass to the DS models. An important point here is
    # to normalize the data so that it has zero mean and unit variance, which is
    # a common requirement for many machine learning algorithms.
    # This step can be easily done using the StandardScaler class.

    rng = np.random.RandomState(123)
    data = load_breast_cancer()
    X = data.data
    y = data.target
    # split the data into training and test data
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.33,
                                                        random_state=rng)

    # Scale the variables to have 0 mean and unit variance
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)

    # Split the data into training and DSEL for DS techniques
    X_train, X_dsel, y_train, y_dsel = train_test_split(X_train,
                                                        y_train,
                                                        test_size=0.5,
                                                        random_state=rng)

    # Train a pool of 100 base classifiers
    pool_classifiers = BaggingClassifier(Perceptron(max_iter=10),
                                         n_estimators=100,
                                         random_state=rng)
    pool_classifiers.fit(X_train, y_train)

    # Initialize the DS techniques
    knorau = KNORAU(pool_classifiers)
    kne = KNORAE(pool_classifiers)
    desp = DESP(pool_classifiers)
    ola = OLA(pool_classifiers)
    mcb = MCB(pool_classifiers)

    ###############################################################################
    # Calibrating base classifiers
    # -----------------------------
    # Some dynamic selection techniques requires that the base classifiers estimate
    # probabilities in order to estimate its competence level. Since the Perceptron
    # model is not a probabilistic classifier (does not implements the
    # predict_proba method, it needs to be calibrated for
    # probability estimation before being used by such DS techniques. This step can
    # be conducted using the CalibrateClassifierCV class from scikit-learn. Note
    # that in this example we pass a prefited pool of classifiers to the
    # calibration method in order to use exactly the same pool used in the other
    # DS methods.
    calibrated_pool = []
    for clf in pool_classifiers:
        calibrated = CalibratedClassifierCV(base_estimator=clf, cv='prefit')
        calibrated.fit(X_dsel, y_dsel)
        calibrated_pool.append(calibrated)

    apriori = APriori(calibrated_pool)
    meta = METADES(calibrated_pool)

    knorau.fit(X_dsel, y_dsel)
    kne.fit(X_dsel, y_dsel)
    desp.fit(X_dsel, y_dsel)
    ola.fit(X_dsel, y_dsel)
    mcb.fit(X_dsel, y_dsel)
    apriori.fit(X_dsel, y_dsel)
    meta.fit(X_dsel, y_dsel)

    ###############################################################################
    # Evaluating the methods
    # -----------------------
    # Let's now evaluate the methods on the test set. We also use the performance
    # of Bagging (pool of classifiers without any selection) as a baseline
    # comparison. We can see that  the majority of DS methods achieve higher
    # classification accuracy.

    print('Evaluating DS techniques:')
    print('Classification accuracy KNORA-Union: ',
          knorau.score(X_test, y_test))
    print('Classification accuracy KNORA-Eliminate: ',
          kne.score(X_test, y_test))
    print('Classification accuracy DESP: ', desp.score(X_test, y_test))
    print('Classification accuracy OLA: ', ola.score(X_test, y_test))
    print('Classification accuracy A priori: ', apriori.score(X_test, y_test))
    print('Classification accuracy MCB: ', mcb.score(X_test, y_test))
    print('Classification accuracy META-DES: ', meta.score(X_test, y_test))
    print('Classification accuracy Bagging: ',
          pool_classifiers.score(X_test, y_test))