def test_predict_diff(example_static_selection): X, y, pool = example_static_selection static_selection_test = StaticSelection(pool, 0.75) static_selection_test.fit(X, y) predicted_labels = static_selection_test.predict(X) assert np.equal(predicted_labels, 1).all()
def test_predict(example_static_selection, create_pool_classifiers): X, y, _ = example_static_selection static_selection_test = StaticSelection(create_pool_classifiers * 10, 0.25) static_selection_test.fit(X, y) predicted_labels = static_selection_test.predict(X) assert np.equal(predicted_labels, 0).all()
def test_predict(): X = X_dsel_ex1 y = y_dsel_ex1 pool_classifiers = create_pool_classifiers_score( 1, 25, 0.5) + create_pool_classifiers_score(0, 25, 1.0) static_selection_test = StaticSelection(pool_classifiers, 0.25) static_selection_test.fit(X, y) predicted_labels = static_selection_test.predict(X) assert np.equal(predicted_labels, 0).all()
def test_label_encoder_base_ensemble(): from sklearn.ensemble import RandomForestClassifier X, y = make_classification() y[y == 1] = 2 y = y.astype(np.float) pool = RandomForestClassifier().fit(X, y) ss = StaticSelection(pool) ss.fit(X, y) pred = ss.predict(X) assert np.isin(ss.classes_, pred).all()
def test_not_fitted(): static_selection_test = StaticSelection(create_pool_classifiers(), 0.25) with pytest.raises(NotFittedError): static_selection_test.predict(np.array([1, -1]))
def test_label_encoder(create_label_encoder_test): X, y, pool = create_label_encoder_test static = StaticSelection(pool).fit(X, y) pred = static.predict(X) assert np.array_equal(pred, y)
def test_not_fitted(): static_selection_test = StaticSelection() with pytest.raises(NotFittedError): static_selection_test.predict(np.array([[1, -1]]))