예제 #1
0
if 'DespoticTem' not in catalog.colnames:
    from despotic_heating import tkin_all
    print("Adding DESPOTIC-derived temperatures to dendrograms.")
    from astropy import units as u
    import gaussian_correction
    gcorfactor = gaussian_correction.gaussian_correction(catalog['Smin303']/catalog['Smax303'])
    # use 2*reff because we care about diameter, not radius
    # then deconvolve out the beam
    # (see paper: 28" -> 30" beam because of gridding_
    beam_pc = (30/(np.sqrt(8*np.log(2)))*u.arcsec*8.5*u.kpc).to(u.pc, u.dimensionless_angles())
    dtems = [tkin_all(density=10**row['density_chi2']*u.cm**-3,
                      sigma=row['v_rms']*u.km/u.s*gf,
                      lengthscale=2*((row['reff']*u.pc*gf)**2-(beam_pc)**2)**0.5,
                      gradient=5*u.km/u.s/u.pc, #min(5,row['v_rms']/row['reff'])*u.km/u.s/u.pc,
                      tdust=row['higaldusttem']*u.K,
                      crir=1e-17*u.s**-1,
                      ISRF=1,
                      tdust_rad=(row['higaldusttem']*u.K *
                                 (1-np.exp(-(10**row['logh2column']/1e24)))))
             for row,gf in ProgressBar(zip(catalog, gcorfactor))]
    catalog.add_column(Column(name='DespoticTem', data=dtems))
    catalog.add_column(Column(name='gausscorrfactor', data=gcorfactor))

    # time estimate: 30m-1h
    dctems = [tkin_all(density=10**row['density_chi2']*u.cm**-3,
                       sigma=row['v_rms']*u.km/u.s*gf,
                       lengthscale=2*((row['reff']*u.pc*gf)**2-(beam_pc)**2)**0.5,
                       gradient=5*u.km/u.s/u.pc, #min(5,row['v_rms']/row['reff'])*u.km/u.s/u.pc,
                       tdust=row['higaldusttem']*u.K,
                       crir=1e-17*u.s**-1,
예제 #2
0
    pl.subplots_adjust(hspace=0.45)
    outf = paths.fpath('param_fits/{name}_oneD_{num}_parameter_constraints.pdf'.format(name=row['Source_Name'],
                                                                                       num=num))
    pl.savefig(outf, bbox_inches='tight')

    row_data = mf.get_parconstraints()
    for key,value in row_data.iteritems():
        row[key] = value


    width = row['width']*u.km/u.s
    row['reff_pc'] = reff.to(u.pc).value

    row['tkin_turb'] = heating.tkin_all(density=10**row['density_chi2']*u.cm**-3,
                                        sigma=width,
                                        lengthscale=reff,
                                        gradient=width/reff,
                                        tdust=row['higaldusttem']*u.K,
                                        crir=0./u.s)


    #if row_data['temperature_chi2'] == 10:
    #    import ipdb; ipdb.set_trace()

log.info("Completed source loop.")

fittable.write(tpath('fitted_line_parameters_Chi2Constraints.ipac'),
               format='ascii.ipac')

log.info("Wrote table file.  Continuing to parameter plots.")

예제 #3
0
    from astropy import units as u
    import gaussian_correction
    gcorfactor = gaussian_correction.gaussian_correction(catalog['Smin303'] /
                                                         catalog['Smax303'])
    # use 2*reff because we care about diameter, not radius
    # then deconvolve out the beam
    # (see paper: 28" -> 30" beam because of gridding_
    beam_pc = (30 / (np.sqrt(8 * np.log(2))) * u.arcsec * 8.5 * u.kpc).to(
        u.pc, u.dimensionless_angles())
    dtems = [
        tkin_all(
            density=10**row['density_chi2'] * u.cm**-3,
            sigma=row['v_rms'] * u.km / u.s * gf,
            lengthscale=2 * ((row['reff'] * u.pc * gf)**2 - (beam_pc)**2)**0.5,
            gradient=5 * u.km / u.s /
            u.pc,  #min(5,row['v_rms']/row['reff'])*u.km/u.s/u.pc,
            tdust=row['higaldusttem'] * u.K,
            crir=1e-17 * u.s**-1,
            ISRF=1,
            tdust_rad=(row['higaldusttem'] * u.K *
                       (1 - np.exp(-(10**row['logh2column'] / 1e24)))))
        for row, gf in ProgressBar(zip(catalog, gcorfactor))
    ]
    catalog.add_column(Column(name='DespoticTem', data=dtems))
    catalog.add_column(Column(name='gausscorrfactor', data=gcorfactor))

    # time estimate: 30m-1h
    dctems = [
        tkin_all(
            density=10**row['density_chi2'] * u.cm**-3,
            sigma=row['v_rms'] * u.km / u.s * gf,
예제 #4
0
    outf = paths.fpath(
        'param_fits/{name}_oneD_{num}_parameter_constraints.pdf'.format(
            name=row['Source_Name'], num=num))
    pl.savefig(outf, bbox_inches='tight')

    row_data = mf.get_parconstraints()
    for key, value in row_data.items():
        row[key] = value

    width = row['width'] * u.km / u.s
    row['reff_pc'] = reff.to(u.pc).value

    row['tkin_turb'] = heating.tkin_all(density=10**row['density_chi2'] *
                                        u.cm**-3,
                                        sigma=width,
                                        lengthscale=reff,
                                        gradient=width / reff,
                                        tdust=row['higaldusttem'] * u.K,
                                        crir=0. / u.s)

    #if row_data['temperature_chi2'] == 10:
    #    import ipdb; ipdb.set_trace()

log.info("Completed source loop.")

fittable.write(tpath('fitted_line_parameters_Chi2Constraints.ipac'),
               format='ascii.ipac')

log.info("Wrote table file.  Continuing to parameter plots.")

execfile(paths.pcpath('parameter_comparisons.py'))