def _evaluateImage(self): signalImage = self._signalImage contrastImage = self._signalImage if self._contrastImage is None else self._contrastImage spot_size = contrastImage.shape[0] * _rel_spot_size spots = detectSpots(contrastImage, spot_size).astype(float) # Rescale the coordinates and radii of the spots since 'contrastImage' might have another resolution than 'signalImage'. spots[:, 0] *= signalImage.shape[0] / contrastImage.shape[0] spots[:, 1] *= signalImage.shape[1] / contrastImage.shape[1] spots[:, 2] *= signalImage.shape[1] / contrastImage.shape[1] spots = np.round(spots) spots = spots.astype(int) self._spots = spots self._values = measure_raw(signalImage, self._spots)
def _evaluateImage(self): signalImage = self._signalImage contrastImage = self._signalImage if self._contrastImage is None else self._contrastImage spot_size = contrastImage.shape[0] * _rel_spot_size spots = detectSpots(contrastImage, spot_size).astype(float) # Rescale the coordinates and radii of the spots since 'contrastImage' might have another resolution than 'signalImage'. spots[:,0] *= signalImage.shape[0]/contrastImage.shape[0] spots[:,1] *= signalImage.shape[1]/contrastImage.shape[1] spots[:,2] *= signalImage.shape[1]/contrastImage.shape[1] spots = np.round(spots) spots = spots.astype(int) self._spots = spots self._values = measure_raw(signalImage, self._spots)
else: if (not os.path.isfile(args["image"])): print("not a file") exit() # read image as grayscale image = imread(args["image"], as_grey=True) #image = rescale(image, scale=0.5) # remove noise #image = gaussian_filter(image, 1) inspectionMask = np.zeros(image.shape) spot_size = image.shape[0] * 0.05 locations = detectSpots(image, spot_size) rawValues = measure_raw(image, locations, inspectionMask=inspectionMask) values = [v.mean for v in rawValues] stdDevs = [v.std for v in rawValues] print("raw measurement: ", rawValues) # plot results fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 4.5)) ax1.imshow(image, cmap='gray') ax1.set_title('Original') ax2.imshow(image, cmap='gray')
else: if(not os.path.isfile(args["image"])): print("not a file") exit() # read image as grayscale image = imread(args["image"], as_grey=True) #image = rescale(image, scale=0.5) # remove noise #image = gaussian_filter(image, 1) inspectionMask = np.zeros(image.shape) spot_size=image.shape[0] * 0.05 locations = detectSpots(image, spot_size) rawValues = measure_raw(image, locations, inspectionMask=inspectionMask) values = [v.mean for v in rawValues] stdDevs = [v.std for v in rawValues] print("raw measurement: ", rawValues) # plot results fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 4.5)) ax1.imshow(image, cmap='gray') ax1.set_title('Original') ax2.imshow(image, cmap='gray')