def search(): btn['state'] = NORMAL #open image button is returened to enabled fracturedataset = core.Dataset( 'trainingimagesgui/' ) #initializes the dataset the parameter is the folder in which to get the images for the dataset mymodel = core.Model([ 'crack' ]) #calls the neural network and it is looking for boxes labelled crack print("model imported" ) #print function to see if the neural network has been called mymodel.fit(fracturedataset) #train the neuralnetwork on the dataset print("finished training custom dataset" ) #prints to show that the neural network has finished training #testing the neural network testimage = utils.read_image( filename ) #read the varible testimage which has the location of what is stored in variable filename print(filename) #test to see the correct location is being pulled endresult = mymodel.predict( testimage) #run the test image on the now trained neural network print( "prediction complete" ) #test to see that the test image has successfully ran on the neural network labels, boxes, scores = endresult #all the parameters the test image will have print(labels) #test to see if the correct label is printed print(boxes) #this will print the coordiantes of the boxes print(scores) #prints a score of how confident the neural network is visualize.show_labeled_image(testimage, boxes, labels) #display the image on the screen
def classificate(self, image_path): image = detecto_utils.read_image(image_path) labels, boxes, scores = self.detector.predict(image) if len(boxes) == 0: return False if DEBUG: detecto_visualize.show_labeled_image(image, boxes, labels) labels_numpy = boxes.detach().cpu().numpy() for box in boxes: detected_logo = image[int(box[1]):int(box[3]), int(box[0]):int(box[2]), :] if self.classifier.classificate(detected_logo): return True return False
def predict_one(self): # Specify the path to your image print(self.imagePath) image = utils.read_image(self.imagePath) predictions = self.model.predict(image) # predictions format: (labels, boxes, scores) labels, boxes, scores = predictions # ['alien', 'bat', 'bat'] print(labels) # xmin ymin xmax ymax # tensor([[ 569.2125, 203.6702, 1003.4383, 658.1044], # [ 276.2478, 144.0074, 579.6044, 508.7444], # [ 277.2929, 162.6719, 627.9399, 511.9841]]) print(boxes) # tensor([0.9952, 0.9837, 0.5153]) print(scores) visualize.show_labeled_image(image, boxes, labels)
from detecto import core, utils, visualize image = utils.read_image('cat.jpg') model = core.Model() labels, boxes, scores = model.predict_top(image) visualize.show_labeled_image(image, boxes, labels)
sample_image = "s1.jpg" #image = detecto.utils(base_path+sample_image) # image = cv2.imread(base_path+sample_image) # cv2.imshow('img',image) # cv2.waitKey(0) img = cv2.imread(base_path+sample_image) # image = read_image(base_path+sample_image) # plt.imshow(image) # plt.show() # cv2.imshow('img',img) # cv2.waitKey(0) dataset = Dataset(base_path) img, targets = dataset[10] show_labeled_image(img, targets['boxes'], targets['labels']) labels = ['spiderman', 'venom'] model = Model(labels) model.fit(dataset) torch.save(model, 'model.pth') # directory = r'C:\Users\kapsi\Desktop\WdPO_P\test' # file_count = sum(len(files) for _, _, files in os.walk(directory)) # if file_count == 0: # print('Theres nothing to show! Closing...') # # else: # pics = list() # for i in range(file_count): # path = test_data + '{}.jpg'.format(i)
def run_detect(image_name): image = utils.read_image('static/' + image_name) model = core.Model() labels, boxes, scores = model.predict_top(image) return visualize.show_labeled_image(image, boxes, labels)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) if (cap.isOpened() == False): print("Error opening video stream or file") i = 0 while (cap.isOpened()): # Capture frame-by-frame ret, frame = cap.read() if ret == True: cv2.imshow('Video', frame) predictions = model.predict(frame) labels, boxes, scores = predictions if len(scores) > 0 and max(scores) > 0.9: visualize.show_labeled_image(frame, boxes[0], labels[0]) if i == 0: win32api.MessageBox(0, 'KNIFE DETECTED. SAVING IMAGE.', 'ALERT', 0x00001000) x1, y1, x2, y2 = boxes[0] img = cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 3) cv2.imshow('detected', frame) cv2.waitKey(0) cv2.destroyAllWindows() cv2.imwrite('knifedetected' + str(i) + '.jpg', frame) sendmail(i) i = i + 1 # Press Q on keyboard to exit ch = cv2.waitKey(1)
def detecto_m(pic): image = utils.read_image(pic) model = core.Model() labels, boxes, scores = model.predict_top(image) result = visualize.show_labeled_image(image, boxes, labels) return result