def eval_all_models(cfg_file=cfg_file, begin_at=4000, add_eval_flag=True): cfg.merge_from_file(cfg_file) cfg.freeze() root = cfg.OUTPUT_DIR last_ckpt_file = os.path.join(root, 'last_checkpoint') step = cfg.SOLVER.CHECKPOINT_PERIOD max_iter = cfg.SOLVER.MAX_ITER with open(last_ckpt_file, 'r') as f: last_ckpt = f.read() last_ckpt_dirname = os.path.dirname(last_ckpt) def evaluation(main): def evaluation_all_models(add_eval_flag=add_eval_flag): for i in range(begin_at, max_iter + step, step): last_ckpt = os.path.join(last_ckpt_dirname, 'model_{:07}.pth'.format(i)) with open(last_ckpt_file, 'w') as f: f.write(last_ckpt) main(add_eval_flag) torch.cuda.empty_cache() print('All models testing finished...') return evaluation_all_models return evaluation
def main(): parser = argparse.ArgumentParser( description="PyTorch Object Detection Training") parser.add_argument( "--config-file", default= "/home/lxl/jittor/detectron.jittor/configs/maskrcnn_benchmark/e2e_faster_rcnn_R_50_C4_1x.yaml", metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument( "--skip-test", dest="skip_test", help="Do not test the final model", action="store_true", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() output_dir = cfg.OUTPUT_DIR if output_dir: mkdir(output_dir) logger = setup_logger("detectron", output_dir) logger.info("Using {} GPUs".format(num_gpus)) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) logger.info("Loaded configuration file {}".format(args.config_file)) model = train(cfg, args.local_rank, False) if not args.skip_test: run_test(cfg, model, False)
def run_inference(config_file): import jittor as jt from jittor_utils import auto_diff from detectron.config import cfg from detectron.modeling.detector import build_detection_model from detectron.utils.checkpoint import DetectronCheckpointer from detectron.data import make_data_loader from detectron.engine.inference import inference from detectron.utils.logger import setup_logger jt.flags.use_cuda = 1 jt.cudnn.set_algorithm_cache_size(0) cfg.merge_from_file(config_file) cfg.freeze() save_dir = "" logger = setup_logger("maskrcnn_benchmark", save_dir) model = build_detection_model(cfg) # hook = auto_diff.Hook('fasterrcnn') # hook.hook_module(model) output_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir) _ = checkpointer.load(cfg.MODEL.WEIGHT) iou_types = ("bbox", ) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm", ) if cfg.MODEL.KEYPOINT_ON: iou_types = iou_types + ("keypoints", ) dataset_names = cfg.DATASETS.TEST data_loaders_val = make_data_loader(cfg, is_train=False) for dataset_name, data_loader_val in zip(dataset_names, data_loaders_val): inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=False if cfg.MODEL.FCOS_ON or cfg.MODEL.EMBED_MASK_ON or cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY, bbox_aug=cfg.TEST.BBOX_AUG.ENABLED, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, cfg=cfg)
def run_torch_inference(config_file): import jittor as jt from jittor_utils import auto_diff from maskrcnn_benchmark.config import cfg from maskrcnn_benchmark.modeling.detector import build_detection_model from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer from maskrcnn_benchmark.data import make_data_loader from maskrcnn_benchmark.engine.inference import inference from maskrcnn_benchmark.utils.logger import setup_logger cfg.merge_from_file(config_file) cfg.freeze() save_dir = "" model = build_detection_model(cfg) model = model.cuda() # hook = auto_diff.Hook('fasterrcnn') # hook.hook_module(model) output_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir) _ = checkpointer.load(cfg.MODEL.WEIGHT) iou_types = ("bbox", ) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm", ) dataset_names = cfg.DATASETS.TEST data_loaders_val = make_data_loader(cfg, is_train=False) for dataset_name, data_loader_val in zip(dataset_names, data_loaders_val): inference( model, data_loader_val, 'coco_2014_minival', iou_types=iou_types, box_only=cfg.MODEL.RPN_ONLY, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, )
def main(cfg_file): parser = argparse.ArgumentParser( description="PyTorch Object Detection Training") parser.add_argument( "--config-file", default=cfg_file, metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--local_rank", type=int, default=int( os.environ['CUDA_VISIBLE_DIVICES'])) # default=0 parser.add_argument( "--skip-test", dest="skip_test", help="Do not test the final model", action="store_true", default=False, # True False ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 args.distributed = num_gpus > 1 # if args.distributed: # torch.cuda.set_device(args.local_rank) # torch.distributed.init_process_group( # backend="nccl", init_method="env://" # ) # synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() output_dir = cfg.OUTPUT_DIR if output_dir: mkdir(output_dir) logger = setup_logger("detectron", output_dir, get_rank()) logger.info("Using {} GPUs".format(num_gpus)) logger.info(args) logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, "r") as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) model = train(cfg, args.distributed) if not args.skip_test: run_test(cfg, model, args.distributed)
def main(): jt.flags.use_cuda = 1 parent_path = os.path.abspath(__file__).split("/tools/")[0] parser = argparse.ArgumentParser(description="Object Detection Inference") parser.add_argument( "--config-file", default= f"{parent_path}/configs/maskrcnn_benchmark/e2e_mask_rcnn_R_50_FPN_1x.yaml", metavar="FILE", help="path to config file", ) parser.add_argument( "--ckpt", help= "The path to the checkpoint for test, default is the latest checkpoint.", default=None, ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() save_dir = "" logger = setup_logger("detectron", save_dir) logger.info("Using {} GPUs".format(1)) logger.info(cfg) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) model = build_detection_model(cfg) output_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir) ckpt = cfg.MODEL.WEIGHT if args.ckpt is None else args.ckpt _ = checkpointer.load(ckpt, use_latest=args.ckpt is None) iou_types = ("bbox", ) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm", ) if cfg.MODEL.KEYPOINT_ON: iou_types = iou_types + ("keypoints", ) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False) for output_folder, dataset_name, data_loader_val in zip( output_folders, dataset_names, data_loaders_val): inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY, bbox_aug=cfg.TEST.BBOX_AUG.ENABLED, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, )
def main(add_eval_flag=False): parser = argparse.ArgumentParser( description="PyTorch Object Detection Inference") parser.add_argument( "--config-file", default=cfg_file, metavar="FILE", help="path to config file", ) parser.add_argument("--local_rank", type=int, default=int(os.environ['CUDA_VISIBLE_DIVICES'])) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 args.distributed = num_gpus > 1 # if args.distributed: # torch.cuda.set_device(args.local_rank) # torch.distributed.init_process_group( # backend="nccl", init_method="env://" # ) # synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() save_dir = "" logger = setup_logger("detectron", save_dir, get_rank()) logger.info("Using {} GPUs".format(num_gpus)) logger.info(cfg) model = build_detection_model(cfg) model.to(cfg.MODEL.DEVICE) output_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir) _ = checkpointer.load(cfg.MODEL.WEIGHT) iou_types = ("bbox", ) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm", ) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=args.distributed) for output_folder, dataset_name, data_loader_val in zip( output_folders, dataset_names, data_loaders_val): coco_results, _ = \ inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, ) synchronize() def add_eval_fields(): ar = coco_results.results['bbox']['AR50'] ap = coco_results.results['bbox']['AP50'] checkpoint_file = checkpointer.get_checkpoint_file() base_checkpoint_file = os.path.basename(checkpoint_file).split('.')[0] new_checkpoint_file = os.path.join( output_dir, base_checkpoint_file + '_ar{:.03}_ap_{:.03}.pth'.format(ar, ap)) os.rename(checkpoint_file, new_checkpoint_file) if add_eval_flag: add_eval_fields()